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Abstract 
Since the non-binary LDPC (Low-Density Parity-Check) 

codes offer better performance than binary LDPC codes for 

a system using high order constellations such as the QAM 

(Quadrature Amplitude Modulation), one proposes in this 

paper a high non-binary LDPC code, called a parallel non-

binary turbo LDPC code. It is obtained by a parallel 

concatenation of two identical regular non-binary LDPC 

codes, separated by an interleaver introducing the diversity 

through the turbo-code structure proposed by Berrou and 

others. Regular codes were used to avoid the complexity of 

irregular codes despite that they have better performance 

than the regular code. In our simulation, we evaluate 

overRayleigh and Gaussian channels, the performance of 

the proposed code combined with a 16-QAMusing Gray 

mapping. We show that the parallel non-binary turbo 

LDPC code outperforms a single non-binary LDPC code, 

with the same code length and code rate. Also, we note that 

its performance can be improved with the increase of two 

numbers of iterations: global iterations and iterations of 

non-binary LDPC codes.  

Index Terms—Low-Density Parity-Check codes, 

turbo-code, parallel concatenation, non-binary, 

iterative decoding. 

I. INTRODUCTION  

With the Internet democratization, mobile, user 

requirements become increasingly large and diverse. 

So digital communications are an essential solution 

now. One solution, among others, is to increase the 

spectral efficiency while guaranteeing an unchanged 

transmission quality. 

Intensive research efforts have been made 

worldwide to realize the coding solution. The key is 

to realize a code to get closer to the Shannon limit[1], 

and also to achieve a good trade-off 

performance/complexity. Until the 80s, the code that 

achieves the Shannon limit with reasonable 

complexity was not yet introduced. Two large error-

correcting code families were imposed: the block 

codes which are subdivided into several types and 

convolution codes [2]. 

The performance of a binary code increases with 

its block length N, while the complexity of decoding 

a binary code of dimension N is of the order of O(N) 

[3, 4]. Concatenated codes are introduced to reduce 

the decoding complexity of a robust error-correcting 

code. 

Concatenated codes are used by Berrou in 1993 [5] 

to introduce a new code, called turbo-code that can 

achieve the Shannon limit. Turbo-codes may be block 

turbo-codes or convolutional turbo-codes [5, 6] 

depending on the type of concatenated codes. Thus, 

depending on the type of concatenation, parallel or 

serial, we can have parallel or series turbo codes. 

After the power of iterative decoding, that was 

highlighted by the invention of turbo codes. The 

binary LDPC, which have been neglected because of 

their complexity, for many years since Gallager 

introduced them in 1962 [7, 8], have been 

rediscovered by Mackay [9] in 1995 Spieleman and 

others [10] in 1996. Luby and others introduced a 

significant contribution in 1997 [11] which 

introduced and set the irregular LDPC codes. These 

later have the main character to perform better than 

regular code. 

In 2002 Davey and Mackey [12] studied the non-

binary LDPC codes. These codes are designed in high 

order Galois Fields GF(q) where q is the cardinality 

of the Galois field. The non-binary LDPC codes 

perform better than their binary equivalents when the 

coded block is low to moderate length, or when the 

modulation used has high order stats. However, the 

advantages of using non-binary LDPC codes involve 

a significant increase in decoding complexity. More 

the high order Galois Fields the complexity becomes 

essential. For a Galois Field GF(q), the complexity is 

of order O(q2). Similarly, the memory required for 

storing messages is of order O(q). 

Also, in [12], the authors proposed the first 

practical iterative decoding algorithm for non-binary 

LDPC codes. This algorithm, called the Sum-Product 

Algorithm (SPA), is optimal iterative decoding with 

computational complexity. Several algorithms have 

been proposed to reduce the complexity of the non-

binary SPA [13, 14, 15], each one with a particular 

performance/complexity trade-off, such as FFT-SPA 

(Fast Fourier Transform), Min-Sum Algorithm, 

Extended Min-Sum algorithm [16, 17] and the Min-

Max Algorithm [41], the Simplified Min-Sum 

Algorithm[19].  

Given the increasing number of applications 

require high-speed transmission without increasing 

the bandwidth of the transmission channel, i.e. high 

spectral efficiency transmissions, while guaranteeing 

an unchanged transmission quality. This is the reason 

for the use of a system combining a high-order 

constellation with high errors correcting code. For 

this system, the QAM is highly recommended as a 

high order constellation. So it is interesting to 

combine a QAM with a non-binary LDPC code. 

http://ijresonline.com/archives/ijres-v6i6p101
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Although non-binary LDPC codes are valid error-

correcting codes for a system using a higher-order 

constellation, QAM, concatenation of these codes 

with iterative decoding is still attractive to construct 

robust errors correcting codes[20, 21, 22] with 

reasonable complexity. 

The original LDPC codes concatenated in parallel 

PCGCs (Parallel Concatenated Gallager Codes), were 

introduced in [23] as a class of concatenated codes in 

which two LDPC codes are irregular binary LDPC 

codes having different parameters interact in parallel 

without interleavers. The interleaver runs as a 

permutation; it changes the weight distribution of the 

code. It is therefore useful in increasing the minimum 

distance of the code. In [24, 25], a serial 

concatenation of binary irregular LDPC codes is also 

introduced. 

The authors in[23] showed how the different 

components LDPC codes with different parameters 

affect the overall performance in a Gaussian channel. 

Although they have limited their description of 

PCGC to a code rate equals to 1/3 by combining two 

LDPC codes of code rate equals to 1/2, they predicted 

that the conclusions are easily extended to the case 

where three or more codes are used as presented in 

[24]. Also, in [23] the authors showed that the 

interleaver is not necessary when the LDPC code is 

concatenated with another, to study the effect of 

interleaving between component LDPC codes, has a 

PCGC been modified to use an interleaver to swap 

bits of information as in the turbo-code as presented 

in [26] for irregular codes. However, the irregular 

LDPC codes have an error floor and a higher coding 

complexity than regular codes, although they are 

more efficient than regular code. In [40], the authors 

introduce the concatenation of binary LDPC codes 

arranged in parallel through the turbo-code structure 

proposed by Berrou and others. A serial 

concatenation of non-binary LDPC codes is proposed 

in [28]. 

In this work, we study the concatenation of two 

identical regular non-binary LDPC codes arranged in 

parallel through the turbo-code structure proposed by 

Berrou and others [5], using an interleaver between 

two LDPC codes that compose it. It is interesting to 

examine the performance of the proposed code when 

combined QAM using Gray coding.  

The rest of the paper is organized as follows. 

Section 2 introduces the non-binary LDPC code and 

the FFT-SPA algorithm used in our simulation. In 

Section 3 and 4, the parallel turbo LDPC encoding 

and decoding are investigated, respectively. Finally, 

the simulation results and concluding remarks are 

given in Section 5 and 6, respectively.  

II. NON-BINARY LDPC CODE 

LDPC codes are linear block codes based on low-

density parity-check matrices that are to say that the 

number of non-zero elements of the matrix is much 

less than the number of 0. The non-zero elements in 

the matrix may be binary or non-binary elements. 

Therefore, we have binary LDPC codes and non-

binary LDPC code. 

Non-binary LDPC codes are defined by their non-

binary parity check matrix H, i.e. the non-zero 

elements in this matrix are numbers in the Galois 

field GF(q) (q>2), of size M×N. The entries in the 

parity-check matrix of a non-binary LDPC code, of 

size (N-M), belong to GF(q). An encoder output can 

be expressed as a sequence of symbols in GF(q).  

Therefore, the code rate is given by R=(N-M)/N. 

LDPC codes can be regular or irregular according 

to the regular or irregular distribution of non-zero 

elements in the matrix. An LDPC code is called 

regular if the number of non-zeros elements in each 

columns wc and/or in each row wr of the matrix H, is 

constant. But if the number of non-zeros in each row 

or column isn't constant, the code is called an 

irregular LDPC code.  

The example of non-binary parity check matrix H 

of size 4×8, in the following equation, defined in 

GF(4),  is regular with 2 elements non-zeros per 

column (𝑤𝑐 = 2) and 4 elements non-zeros elements 

per row (𝑤𝑟 = 4).  

 

𝐻 = (

1 0 1 2 0 0 0 4
2 3 0 1 0 0 2 0
0 0 1 0 1 1 0 1
0 3 0 0 3 1 1 0

) 

 

Their parity check matrix represents LDPC codes, 

and by a graphical representation, called the Tanner 

graph corresponds to the matrix H.TheTanner graph 

is a bipartite graph composed of two types of nodes: 

variable nodes representing the symbols of the coded 

block and the check nodes represent parity check 

equations. Branches connect these two types of nodes 

according to the non-zero elements of the matrix H. 

The number of variables 𝑁𝑚(𝑚 ∈ {1, … , 𝑀}) and 

check nodes 𝑀𝑛(𝑛 ∈ {1, … , 𝑁})  Corresponds 

respectively to the number of matrix columns N and 

rows M. 

The Tanner graph is used as a transmission 

medium by the decoder. At first, all variable nodes 

are initialized. After, each check node receives 

messages arriving from the variable nodes that are 

connected by her branches, then calculates and sends 

the resulting message that is related to all messages 

except the input message that the resulting message 

sent. Then, these same operations are performed by 

the variable nodes. 

Then, a posteriori information associated to each 

variable node is calculated before taking a decision. 

Finally, after many iterations or in case the syndrome 

is zero, the algorithm stops. 

Let, for all symbol a, where𝑎 ∈ 𝐺𝐹(𝑞) , 𝛼𝑚,𝑛  be 

the soft messages from variable nodes 𝑣𝑛  to check 

nodes𝑐𝑚 and𝛽𝑚,𝑛  be the soft messages from check 

nodes𝑐𝑚  to variable nodes𝑣𝑛 .The initial message𝛾𝑛 

sent from variable nodes 𝑣𝑛  to check nodes𝑐𝑚  is a 



Latifa Mostari et al. / IJRES 6(6), 1-6, 2019 

3 

soft demapping of the received signal 𝛾𝑛  given 

knowledge of the channel properties. 

❖ FFT-Sum Product Algorithm (FFT-SPA) 

The FFT-SPA can be summarized as follows [29]. 

• Initialization 

𝛾𝑛(𝑎) = 𝑃𝑟(𝑣𝑛 = 𝑎 𝑦𝑛⁄ )  

where𝑃𝑟(𝑣𝑛 = 𝑎 𝑦𝑛⁄ )is the probability that 𝑣𝑛 =
𝑎 given the received signal 𝑦𝑛.

 
Variable node messages 

𝛼𝑚,𝑛(𝑎) = 𝛾𝑛(𝑎)   

- Iterations 

• Check node calculation 

𝛽𝑚,𝑛(ℎ𝑖𝑗 ⊗ 𝑎) = 𝐹𝐹𝑇−1 ( ∏ 𝐹𝐹𝑇 (𝛼𝑚,𝑛′(ℎ𝑖𝑗

𝑛′∈𝑁𝑚 𝑛⁄

⊗ 𝑎))) 

• Variable node calculation 

𝛼𝑚,𝑛(𝑎) = 𝛿𝑚,𝑛𝛾𝑛(𝑎) ∏ 𝛽𝑚′,𝑛(𝑎)

𝑚′∈𝑀𝑛 𝑚⁄

 

Where𝛿𝑚,𝑛 =
1

∑ 𝛾𝑛(𝑎) ∏ 𝛽
𝑚′,𝑛

(𝑎)
𝑚′∈𝑀𝑛 𝑚⁄𝑎

 

• A posteriori information 

�̃�𝑛(𝑎) = 𝛿𝑛𝛾𝑛(𝑎) ∏ 𝛽𝑚′,𝑛(𝑎)

𝑚′∈𝑀𝑛  

• Decision 

A hard decision is made after each variable node 

update as: 

  𝑍𝑛 = argmax
𝑎∈𝐺𝐹(𝑞)

(�̃�𝑛(𝑎))  

 
Finally, after a number of iterations or if 

  𝑍𝑣𝑗
𝐻𝑇 = 0 

i.e.   𝑍𝑣 = [𝑍𝑣1
, … , 𝑍𝑣𝑁

] is a valid code 

word, the algorithm stops. 

III. PARALLEL TURBO LDPC CODING 

Figure 1 shows the structure of a parallel turbo 

LDPC code encoder, constructed from two 

elementary LDPC codes ENC1 and ENC2, separated 

by an interleaver noted π introducing diversity. This 

should help increase the free distance of concatenated 

codes[30].  

The code rate of a parallel turbo LDPC code 

encoder is given by [31]: 

𝑅𝑐𝑝 =
𝑅1.𝑅2

𝑅1+𝑅2−𝑅1.𝑅2
     

where𝑅1  is the code rate of the first component 

encoder ENC1 and 𝑅2 is the code rate of the second 

component encoder ENC2. 

 

 

Figure 1.Structure of a rate 1/3 parallel turbo 

LDPC encoder 

The two elementary codes ENC1 and ENC2 use the 

same input blocks, but following different sequences. 

This is made possible by the presence of the 

interleaver[32]. 

Since the two-component encoders are systematic 

and use the same information block, it does not need 

to transmit the input of the second encoder C2, and 

this increases the turbo-code efficiency. It is useful 

only to double the diversity in the presence of fading 

[33]. 

Thus, the turbo-encoder rate is 1/3; that is, for 

every input block, the encoder produces three code 

blocks. One is the information block itself (we call it 

the systematic block), and the other two are the parity 

blocks generated by the two systematic non-binary 

LDPC encoders[34]. 

The first elementary code ENC1 uses the 

information block of size N-M, 𝑑 = [𝑑1𝑑2 … 𝑑𝑁−𝑀], 
with a parity check matrix H of size 𝑀 × 𝑁  and 

generates the coded information block size N: 

[𝑦1𝑑1] = [𝑦1
1𝑦2

1 … 𝑦𝑀
1 𝑑1

1𝑑2
1 … 𝑑𝑁−𝑀

1 ]  

with𝑑1 is the systematic block 𝑑1 = 𝑑 , and 𝑦1  is 

the parity block. 

The second elementary encoder ENC2 uses the 

interleaved information block 𝑑𝑒𝑛𝑡𝑟𝑒𝑙𝑎𝑐é , and 

generates the coded block size N: 

[𝑦2𝑑2] = [𝑦1
2𝑦2

2 … 𝑦𝑀
2 𝑑1

2𝑑2
2 … 𝑑𝑁−𝑀

2 ] 
with𝑑2  is the interleaved information block 𝑑2 =

𝑑𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑
1 = 𝑑𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑 , and 𝑦2 is the parity block. 

Therefore, for the information block of a size N-M, 

𝑑 = [𝑑1𝑑2 … 𝑑𝑁−𝑀], the LDPC encoder generates the 

turbo coded information block of size N: 

[𝑦2𝑦1𝑑1] = [𝑦1
2𝑦2

2 … 𝑦𝑀
2 𝑦1

1𝑦2
1 … 𝑦𝑀

1 𝑑1
2𝑑2

1 … 𝑑𝑁−𝑀
1 ] 

The parallel concatenation of more than two 

codes[35] gives turbo codes with low code rates. 

 

IV. PARALLEL TURBO LDPC DECODING 

𝑦2 

𝑑 

𝜋 

 
𝑦1 NB-LDPC Code 

(ENC1) 

 

NB-LDPC Code 
(ENC2) 

 

𝑑1 
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Turbo decoding is done according to the principle 

of iterative decoding[36] or turbo based on the use of 

decoders with soft-input and soft-output[37] who 

exchange reliability information, called extrinsic 

information, via a cons-reaction, in order to improve 

the correction over the iterations. 

A turbo parallel LDPC decoder shown in figure 2, 

is constituted by two elementary decoders DEC1 and 

DEC2 respectively associated with ENC1 and ENC2 

arranged in parallel, two inter leavers and a de-inter 

leaver noted 𝜋−1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Parallel turbo LDPC decoder 

The turbo LDPC decoder contains two LDPC 

decoders decoded iteratively. Therefore, each 

iteration 𝑖𝑡𝑒𝑟𝑡𝑢𝑟𝑏𝑜 of the turbo, LDPC code contains 

multiple iterations 𝑖𝑡𝑒𝑟𝑙𝑑𝑝𝑐 . The performance of a 

turbo LDPC code can be improved with the increased 

number of iterations (𝑖𝑡𝑒𝑟𝑙𝑑𝑝𝑐 , 𝑖𝑡𝑒𝑟𝑡𝑢𝑟𝑏𝑜). 

The turbo decoder receives the observations 

[𝑦2′𝑦1′𝑑1′]  from the channel and estimates the 

transmitted message. 

Both decoders DEC1 and DEC2 work together so 

that the decoder DEC1 can benefit from 𝑦2′ and the 

decoder DEC2to 𝑦1′ . They provide, after a fixed 

𝑖𝑡𝑒𝑟𝑙𝑑𝑝𝑐 , a first estimate𝐼1 (from DEC1)  and 𝐼2 (from 

DEC2), each one communicates its results to the other 

(𝐼1  to DEC2 and 𝐼2  to DEC1) for a new pass. They 

then provide a second estimate. After each one 

communicates its results to the next and so on. 

Decoding stops after a fixed number of iterations, and 

the final decision may come from DEC1 or DEC2. 

The turbo LDPC decoder receives the soft 

observations [𝑦2′𝑦1′𝑑1′] . At each iteration, the two 

decoders DEC1 and DEC2 respectively work together 

and use the input blocks [𝑦1
′ , 𝑋1] and [𝑦2

′ , 𝑋2]  with 𝑋1 

and 𝑋2 are given by: 

 

X1 = {
d1'at the first iteration

d1' + I2 deinterleavedat the other iterations
 

 

𝑋2 = {
𝑑𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑

1′ 𝑎𝑡𝑡ℎ𝑒𝑓𝑖𝑟𝑠𝑡𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑑𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑
1′ + 𝐼1 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑𝑎𝑡𝑡ℎ𝑒𝑜𝑡ℎ𝑒𝑟𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

 

 

where𝐼1 and 𝐼2, the extrinsic information. 

The presence of the interleaver𝜋 and deinterleaver 

𝜋−1 respectively at the output of the decoder DEC1 

and that of the decoder DEC2decorrelate the soft 

decisions at the output of each decoder [38].  

Several methods of interleaving are possible. 

However, the choice of the structure of an interleaver 

is a key factor that determines the performance of a 

turbo LDPC code, in that it changes their free 

distance property. 

So that this turbo LDPC decoder is performed 

correctly even after several iterations of decoding, 

interleaving and deinterleaving must be carried out in 

pseudo-random or random. With these two types of 

interleaving, turbo LDPC codes appear random. In 

our work, we use a random interleaver. 

In the proposed non-binary turbo LDPC decoder, 

each non-binary turbo LDPC code contains two non-

binary LDPC decoders decoded iteratively. 

Therefore, each turbo iteration, 𝑖𝑡𝑒𝑟𝑡𝑢𝑟𝑏𝑜of the non-

binary turbo, LDPC code contains multiple LDPC 

iterations 𝑖𝑡𝑒𝑟𝑙𝑑𝑝𝑐. Thus, the total iteration number is: 

𝑖𝑡𝑒𝑟𝑡𝑜𝑡𝑎𝑙 = (𝑖𝑡𝑒𝑟𝑙𝑑𝑝𝑐 × 2) × 𝑖𝑡𝑒𝑟𝑡𝑢𝑟𝑏𝑜 [21] 

V. SIMULATION RESULTS 

In this section, we discuss the performance of a 

rate 1/3 non-binary turbo LDPC code with a parallel 

concatenation of two identical non-binary LDPC 

codes constructed on GF(4) of rate ½, decoded by 

FFT-SPA. Note that the simulations here are based on 

16-QAM constellations using Gray mapping over 

Gaussian and Rayleigh channels.  

A parity check matrix makes the non-binary LDPC 

code with the parameters (𝑤𝑐 = 4, 𝑀 = 1024, 𝑁 =
1536), and the parallel non-binary turbo LDPC code 

is composed of two identical rates 1/2 non-binary 

LDPC codes with the parameters (𝑤𝑐 = 3, 𝑀 =
512, 𝑁 = 1024).  

BER performance of a non-binary turbo LDPC 

code can be improved with the increasing of the 

iterations number. As mentioned before, the total 

iteration number is 𝑖𝑡𝑒𝑟𝑡𝑜𝑡𝑎𝑙 = (𝑖𝑡𝑒𝑟𝑙𝑑𝑝𝑐 × 2) ×

𝑖𝑡𝑒𝑟𝑡𝑢𝑟𝑏𝑜 . Thus, there are many different iteration 

number settings (𝑖𝑡𝑒𝑟𝑙𝑑𝑝𝑐 , 𝑖𝑡𝑒𝑟𝑡𝑢𝑟𝑏𝑜) can be selected 

for a fixed 𝑖𝑡𝑒𝑟𝑡𝑜𝑡𝑎𝑙 . We show in figures 3 and 4 the 

performance improvements of a rate 1/3 (512, 1024)2 

non-binary turbo LDPC code with several values of 

iteration. 

The results in figure 3 used Gaussian channel show 

that, with 16-QAM constellation using Gray 

mapping, the performance comparisons of a rate 1/3 

(512, 1024)2 non-binary turbo LDPC code with their 

component code (i.e. a rate ½ (512, 1024) non-binary 

LDPC code and a rate 1/3 (1024, 1536) non-binary 

LDPC code. 

To investigate the performance of a non-binary 

turbo LDPC code in a Rayleigh fading channel,  

performance comparisons is conducted on a Rayleigh 

channel in figure 5. 

𝑋2 

𝑋1 

𝐼1 

𝐼2 

�̂� 

𝑦2′ 

𝑦1′ 

𝑑1′ 

 

NB-LDPC 
decoder 
(DEC1) 

𝜋 

 NB-LDPC 
decoder 
(DEC2) 

 

 

 

1−
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In figures 3 and 4, we can see that the proposed 

code outperforms a single non-binary code. We note 

that, as stated earlier, the performance of a turbo 

LDPC code can be improved with the increased 

number of iterations(𝑖𝑡𝑒𝑟𝑙𝑑𝑝𝑐 , 𝑖𝑡𝑒𝑟𝑡𝑢𝑟𝑏𝑜). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Performance comparisons of a rate 1/3 

(512,1024)2 non-binary turbo LDPC code with a rate 

½ (512,1024) non-binary LDPC code and a rate 1/3 

(1024, 1536) non-binary LDPC code, associated with 

16-QAM constellation under Gaussian channel. 

 

 

 

 

 

 

 

 

Figure 4. Performance comparisons of a rate 1/3 

(512,1024)2 non-binary turbo LDPC code with a rate 

½ (512,1024) non-binary LDPC code and a rate 1/3 

(1024, 1536) non-binary LDPC code, associated with 

16-QAM constellation under Rayleigh channel 

VI. CONCLUSION 

In this work, we propose a non-binary turbo LDPC 

code. It is an error-correcting code scheme based on 

the parallel concatenation of non-binary LDPC codes 

according to the turbo principle proposed by 

Berrouand other. Simulation results show that the 

performance of non-binary turbo LDPC code, with 

16-QAM constellation using Gray mapping under 

Gaussian and Rayleigh channels, are higher than their 

component code and the performance of a rate 1/3 

non-binary LDPC code.  
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