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Abstract 

       We study in this paper the problem at the limits of 

a cylindrical tube subjected to shear. The 

mathematical considerations of this problem lead to a 

non-linear differential equation. Resolution 

techniques allow us to have an analytical solution 

whose asymptotic stability we study. We then 

established that the different behaviours of the tube 

depend only on the constitutive law of the material 

through the coefficients, which themselves depend on 

the derivatives of the potential concerning the 

invariants. 

Keywords - Hyperelastic, compressibility, shear, 

nonlinearity, perturbation, asymptotic stability. 

I. INTRODUCTION 

The problem of the telescopic shearing of a 

compressible hyperplastic cylinder has often been 

studied. Simple shear, pure shear, and telescopic shear 

are considered the most important modes in the 

deformation of materials [1]. While pure shear is an 

ideal deformation mode for metal forming operations 

[2], telescopic shear is considered as an optimal mode 

of deformation for grain refinement via severe plastic 

deformation. It is well known from the literature that, 

in the absence of body force, several deformations can 

be supported in equilibrium in an (in) compressible 

isotropic nonlinearly elastic solid material by 

applying surface traction alone [3]. Such deformations 

are said to be controllable. If within a given class of 

materials, the deformation is controllable for all 

materials and independent of any specific constitutive 

law in the considered class, then the deformation is 

said to be universal [4]. The deformation of particular 

interest in the present paper is a telescopic shear of a 

cylindrical circular tube. 

Several authors have studied many 

deformations: finite extension, inflation, and torsion 

for isotropic materials from many different 

perspectives in the past.  

For compressible isotropic materials, for 

which the finite extension, inflation, and torsion are 

not, in general, controllable. A class of materials 

admitting isochoric pure torsional deformation was 

proposed by several authors [5]. 

Few studies include the telescopic shear in 

the compressible case, and few authors have 

published an exact solution in this situation. However, 

there has been a resurgence of interest in determining 

solutions within the context of specific combined 

problems which are complicated to obtain, even in the 

isotropic case and for simple geometries. To solve 

these boundary problems, several authors use the 

perturbation method.  

Perturbation methods, also known as 

asymptotic, allow the simplification of complex 

mathematical problems. The use of perturbation 

theory will allow approximate solutions to be 

determined for issues that cannot be solved by 

traditional analytical methods. Second-order ordinary 

linear differential equations are solved by engineers 

and scientists routinely. However, in many cases, 

real-life situations can require much more difficult 

mathematical models, such as non-linear differential 

equations. 

Singularly perturbed differential equations, 

being an adequate mathematical model of real-life 

multi-time-scale systems, were studied extensively in 

the literature [6,7,8]. One of the essential classes of 

such equations is the class of equations with small-

time delays of the order of a small positive parameter 

ε multiplying a part of the derivatives in the system. 

Brief surveys of results in this topic can be found 

[8,9,10]. One of the essential issues studied in the 

theory of differential equations is stability [6,11]. Two 

approaches to studying the strength of the trivial 

solution to linear constant-coefficients differential 

systems (without and with time delays) are most 

spread in the literature. The first (classical one) is 

based on the spectrum analysis of the system. The 

second (more recent one) is a Lyapunov-method-

based one leading to sufficient conditions in terms of 

linear matrix inequalities. Traditional asymptotic 

stability has been studied either by Lyapunov's direct 

method or by Poincare's geometric method. The first 

attempt to unify the two procedures was carried out 

by La Sallby, combining information obtained from 

natural and straightforward Liapunov's functions with 

information about geometric properties obtained from 

the invariance principle of the limit set. 

The purpose of the present paper is to 

examine, in dynamic, the axial shear problem of a 

hollow circular cylindrical tube. The inner surface of 

the tube is bonded to a rigid cylinder, and a uniformly 

distributed axial shear traction is applied to the outer 

surface of the tube with zero radial traction 

maintained at the same surface. The tube is assumed 

sufficiently long so that end effects are negligible. 

http://ijresonline.com/archives/ijres-v6i1p102
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Since the material is compressible, there is no radial 

deformation. 

In the present analysis, we apply perturbation 

theory to approximate solutions to engineering 

problems that would otherwise be intractable through 

traditional analytical methods.  

II. FORMULATION 

      We consider the axial shear of a hollow circular 

cylindrical tube. The body is composed of an 

incompressible isotropic hyperelastic material with 

strain-energy density per unit volume. Since the early 

work of Rivlin [12], the axial shear problem for 

general incompressible materials has received some 

attention. The problem for compressible materials has 

been more widely investigated [13]. 

For the compressible tube, with the inner surface 

bonded to a rigid cylinder and a uniformly distributed 

axial shear traction applied to the outer surface, the 

deformation is that of pure axial shear described by 

𝑟 = 𝑅,   𝜃 = 𝛼0Θ,   𝑧 = 𝜆𝑍 + 𝑤(𝑅, 𝑡),   (2.1)    

 Where (𝑅, Θ, 𝑍) and (𝑟, 𝜃, 𝑧) are respectively the 

reference and the deformed positions of material 

particle, 𝑤(𝑅, 𝑡) is the axial displacement which 

defines the telescopic shear, 

𝑅𝑖 ≤ 𝑅 ≤ 𝑅𝑜, 𝑅𝑖and 𝑅𝑜denote, respectively, the inner 

and outer radius of the cylinder. 

We consider a compressible and opened tube defined 

by the angle Θ0.the parameter𝛼0 = 𝜋 Θ0⁄  and 𝜆 is the 

twist angle per unit unloaded length. 

From (2.1), in the cylindrical system, a routine 

calculation gives the physical components of the 

deformation gradient𝐅,  

  

 𝐅 = (

1 0 0
0 𝛼0 0

𝑤′(𝑅, 𝑡) 0 𝜆
) ,   (2.2) 

 

And the physical components of the left Cauchy-

Green tensor 

 

 𝐁 = (

1 0 𝑤′(𝑅, 𝑡)

0 𝛼0
2 0

𝑤′(𝑅, 𝑡) 0 𝜆2 +𝑤′(𝑅, 𝑡)2
) ,  (2.3) 

 

 

Where 𝑤′(𝑅, 𝑡) = 𝜕𝑤(𝑅, 𝑡)/𝜕𝑅. 

The strain energy density per unit undeformed volume 

for an elastic and isotropic material is given by [14]: 

 𝑊 = 𝑊(𝐼1, 𝐼2, 𝐼3) =
𝛼

2
(𝐼1 − 3) +

𝛽

2
(𝐼1 − 3)

2 +
𝛾

2
(𝐼2 − 3) +

𝛿

2
(𝐼3 − 1) ,  (2.4) 

with principal invariants 

 𝐼1 = 1 + 𝛼0
2 + 𝜆2 +𝑤′(𝑅, 𝑡)2 , 

 𝐼2 = 𝛼0
2 + 𝜆2 + 𝛼0

2𝜆2 + (𝛼0
2 +

𝜆2

2
)𝑤′(𝑅, 𝑡)2,   (2.5) 

 𝐼3 = 𝛼0
2𝜆2. 

And 𝛼, 𝛽, 𝛾, 𝛿 are the constants. 

 The corresponding response equation for the Cauchy 

stress tensor𝐓 is: 

 𝐓 =
2

√𝐼3
[(𝐼2𝑊2 + 𝐼3𝑊3)𝟏 +𝑊1𝐁 − 𝐼3𝑊2𝐁

−1] , (2.6) 

where 𝟏 is the identity tensor and 𝑊𝑖 =
𝜕𝑊 𝜕𝐼𝑖 , (𝑖 = 1,2,3)⁄ . 

We obtain 

{
 
 

 
 Trr =

2

λα0
[(I2W2 + I3W3) + W1 − I3W2 (1 +

w′2

λ2
)]

Tθθ =
2

λα0
[(I2W2 + I3W3) + α0

2W1 − I3W2
1

α0
2]

Tzz =
2

λα0
[(I2W2 + I3W3) +W1(λ

2 +w′2) − I3W2 (
1

λ2
)]

,  (2.7a) 

 {
Trθ = Tθz = 0

Trz =
2

λα0
[W1w

′ +
1

λ2
I3W2w′ (

1

λ
)]

.       (2.7b) 

With the equations (2.1), (2.4), and (2.6), and in the 

absence of body forces, the equation of motion is 

given by:  

 {

∂Trr

∂r
+

Trr−Tθθ

r
= 0

∂Tzr

∂r
+

Tzr

r
= ρẅ

 (2.8) 

where �̈� = 𝜕2𝑤(𝑅, 𝑡) 𝜕𝑡2⁄  and 𝜌 = 𝜌0 𝜆𝛼0⁄  is the 

density in the deformed configuration. 

Taking into account the form of (2-4), (2-5), and (2-

7), we can rewrite the equations of motion (2-8) in the 

form: 

 {
w′′w+

𝐶0

𝑅
𝑤′2 +

𝐶1

𝑅
= 0

w′′w+ 𝐶2w
′′ +

𝐶3

𝑅
𝑤′3 +

𝐶4

𝑅
w′ = 𝐶5ẅ

  (2.9) 

by combining these two equations, we get: 

 w′′ +
K0

R
w′3 +

K1

R
w′2 +

K2

R
w′ + K3ẅ = 0. (2.10) 

where  𝐾𝑖, (i=0-3) are constants. 

III. APPLICATION OF PERTURBATION 

METHODS 

     The great majority of problems that we have to 

solve in Physics are not exactly solvable. Because of 

this and taking into account that we live in the epoch 
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of computers, the last decades have seen a lot of 

progress in developing techniques leading to 

approximate solutions. The perturbation method is 

used for not precisely solvable Hamiltonian problems 

when the Hamiltonian differs slightly from an exactly 

solvable one. The difference between the two 

Hamiltonians is known as the perturbation 

Hamiltonian. All perturbation methods are based on 

the smallness of the latter concerning both 

Hamiltonians.  

The equation (2.10) admits an obvious solution there 

𝑤0 = 0. 
Linearizing about𝑤0, we plug 

 

𝑤 = 𝑤0 + 𝜀𝐻(𝑅, 𝑡) 
into the equation (2.10), to obtain 

 

 εH′′ + 𝜀3
K0

R
𝐻′

3
+ 𝜀2

K1

R
H′

2
+ ε

K2

R
H′ + εK3Ḧ =

0. (3.1) 

 

Where 𝐻 plays the role of perturbation, 𝜀 "1 is a small 

parameter qualifying the magnitude of disturbance. 

Suppose that for the compact𝐶𝑅 = [𝑅𝑖  , 𝑅0], there 

exist two locally 𝐿1functions [15] 

𝑟(𝑡) And 𝜂(t): 𝐑+ → 𝐑+such that (s.t) 

∀(𝑅, 𝑡) ∈ 𝐶𝑅 × 𝐑
+,‖𝐻(𝑅, 𝑡)‖ ≤ 𝑟(𝑡) and ∀𝛿 >

0, ∃𝜇𝐻(𝛿) > 0 𝑠. 𝑡. if 𝐸 ⊂ [𝑡, 𝑡 + 1] is a measurable 

set with measure< 𝜇(𝛿) then ∫ 𝑟(𝜏)𝑑𝜏 ≤ 𝛿, 𝜏 ∈ 𝐸. 
As is shown in [16], these hypotheses guarantee the 

pre-compactness of the equation (3.1) in the restrict 

sense and the uniqueness of the solution for (3.1). 

From (3.1), we assume that 𝐻(𝑅, 𝑡) has the following 

form [17]:    

 

𝐻(𝑅, 𝑡) = 𝑓(𝑅) + 𝑔(𝑅)cos (�̃�𝑡) 
 

Assuming 𝜀 "1, we can neglect the terms 𝜀𝑝, 𝑝 ≥ 2. 

Equation (3.1) becomes. 

 

 f ′′ +
K2

R
f ′ + [g′′ +

K2

R
g′ − 𝐾3�̃�

2𝑔] cos(�̃�t) =

0, ∀t ≥ 0. (3.2) 

 

We get a system of decoupled equations: 

 

 {
f ′′ +

K2

R
f ′ = 0

g′′ +
K2

R
g′ − 𝐾3�̃�

2𝑔 = 0
 (3.3) 

 

 

We find the so-called Bessel equations encountered in 

many physical problems, particularly those with 

cylindrical symmetry. The solutions obtained 

(Frobenius method) are given a series. 

 

The first equation of the system (3.3) gives 

 

 f(R) = −
A0

K2
R(1−K2) + A1. (3.4) 

 

The second equation of the system (3.3) is a modified 

Bessel equation. The solution is given by: 

 

 g(R) = 𝑅𝜈[𝐴2𝐼𝜈(𝑅�̃�√𝐾3) + 𝐴3𝐾𝜈(𝑅�̃�√𝐾3)],    (3.5) 

 

 

Where 𝜈 =
1−𝐾2

2
, Iν(x) = (

x

2
)
ν
∑ (

(
x

2
)
2n

Γ(n+υ+1) n!
)n≥0 , 

Kν(x) =
π

2 sin (νπ)
(I−ν(x) − Iν(x)),𝜈 ∉ 𝐙,  

and 𝐴𝑖 , (𝑖 = 0,1,2,3) are constants. 

A function is called a Bessel function (of fractional 

order) if it is a solution of the Bessel's differential 

equation (3.3.b), where 𝜈 is a positive no integral 

number. Bessel's differential equation plays a 

significant role in physics and engineering. 

Thus, disturbed solution, expressing the deformation 

described in (2.1) is given by 

 W(R, t) = ε. f(R) + ε. g(R). cos(𝑤.̃ 𝑡) 

                = ε [−
A0

K2
R(1−K2) + A1 +

(𝑅𝜈)[𝐴2𝐼𝜈(𝑅�̃�√𝐾3) + 𝐴3𝐾𝜈(𝑅�̃�√𝐾3)]) cos(𝑤.̃ 𝑡)],    (3.6) 

IV. ON STABILITY FOR PERTURBED 

DIFFERENTIAL EQUATIONS 

Stability or instability of non-linear systems 

can often be tested by an approximate procedure, 

which leads to a linear equation describing the growth 

of the difference between the test solution and its 

neighbors.  

We will now solve the approximate Bessel's 

differential equation in a class of analytic function, 

𝐶𝐾 . 

Let 𝜈 =
1−𝐾2

2
 be a positive no integral 

number and let 𝑝 be a no negative integer with         

𝑝 < 𝜐 < 𝑝 + 1. 
Assume that a function 𝑔 ∈ 𝐶𝐾  satisfies the 

differential inequality [21] 

 |𝑔′′(𝑅) +
K2

R
g′(𝑅) − 𝐾3�̃�

2𝑔(𝑅)| ≤ 𝜁,   (3.7) 

for all 𝑅 ∈ 𝐶𝑅 = [𝑅𝑖  , 𝑅0] And for some 𝜁 ≥ 0. The 

sequence𝑏𝑛 =
1

Γ(n+υ+1) n!
 satisfies the condition 

 𝑏𝑛+2 = 𝑂(𝑏𝑛)  𝑎𝑠 𝑛 →  ∞, 

then there exists an approximate solution 𝑔ℎ(𝑅) of the 

Bessel's differential equation (3.3.b) such that 

 |𝑔(𝑅) − 𝑔ℎ(𝑅)| ≤ 𝜁𝐾𝐿𝜐𝑀(𝑅)   (3.8) 

where 𝐿𝜐 = ∑ (
1

(𝑚−𝜐)2
) < ∞,𝑚≥0  
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 𝑀(𝑅) ≤ 𝑚𝑎𝑥 {
𝑅𝑅+1

|𝜐2−𝑛2|𝑅 2⁄ ;
𝑅𝑅+1

|𝜐2−(𝑛+1)2|𝑅 2⁄ } ≤

𝑚𝑎𝑥 {
𝑅𝑜
1+𝑅𝑜

|𝜐2−𝑛2|𝑅𝑖 2⁄
;

𝑅𝑜
1+𝑅𝑜

|𝜐2−(𝑛+1)2|𝑅𝑖 2⁄
}. 

The last term of this double inequality is constant and 

positive, and the hypotheses of the theorem on the 

global attractivity and the eventual stability are 

verified [19, 20]. 

Then, in virtue of this theorem, we obtain that the 

solution 𝑔(𝑅) is globally attractive and eventually 

stable with respect to (3.3b). 

The stability of the cylindrical tube is investigated 

concerning superposed pure homogeneous 

deformations. Because of the simplicity of the 

underlying assumptions, necessary and sufficient 

conditions are obtained for stability in terms of the 

general strain-energy function for compressible, 

isotropic, homogenous, elastic materials. 

In mathematics, any continuous function on a 

bounded closed interval is uniformly continuous and 

bounded. 

The solution 𝑤(𝑅, 𝑡) is then bounded in [𝑅𝑖, 𝑅𝑜]. 
There is, therefore, a constant such 𝐿0 that |𝑔(𝑅) −
𝑔ℎ(𝑅)| ≤ 𝐿0. 

The series defined in the solutions are convergent. On 

the other hand, they are uniformly continuous on the 

compact[𝑅𝑖  , 𝑅0] They are bounded. We can then 

affirm that there is a constant𝐿0̃ , independent of 𝑅 

such that: 

|𝑤(𝑅1, 𝑡) − 𝑤(𝑅2, 𝑡)| ≤ 𝐿0̃, ∀ 𝑅𝑗 ∈ [𝑅𝑖 , 𝑅𝑜], 𝑗 =

1, 2 𝑎𝑛𝑑 ∀ 𝑡 ≥ 0    (3.9) 

With Lipchitz's theorem, we can say that the solution 

defined in (3.6) is stable for the deformation (2.1). 

The strain energy, described in (2.4), is polyconvex.  

In general, under polyconvexity assumptions, no 

claim can be made as to the stability or smoothness of 

the solution, apart from the natural statement that the 

minimizer lies in the Sobolev space considered. 

Moreover, it is not known that minimizing 

deformation is a weak solution to the local balance 

equation due to possible singularities in the 

deformation gradient. We remark that polyconvexity 

implies the existence of all boundary conditions and 

body forces, which might be somewhat unrealistic. 

V. CONCLUSION 

      We studied the behavior of a tube subjected to an 

axial shear problem. This study led us to the 

resolution of a non-linear partial differential equation. 

In this paper, we describe techniques for obtaining 

approximations to periodic time solutions of nearly 

second-order differential equations subject to a 

harmonic forcing term. The approximations take the 

form of an expansion in integer powers of a small 

parameter, having coefficients that are functions of 

time. We wish to be able to take a few terms of 

expansion and to be able to say that for some small 

fixed numerical value of𝜀 supplied in a practical 

problem, the truncated series is close to the required 

solution for the whole range of the independent 

variable in the differential equation. The solution, in 

serial form, allowed us to study the stability of the 

tube. 

In light of this study, we have shown the possibility 

offered by this method for the study of the stability of 

a hollow tube through a non-linear differential 

equation presenting an obvious solution. It emerges 

from this study that the stability analysis depends on 

the constitutive law of the material through the 

coefficients. The results obtained are significant 

because they suggest that it is possible to find a 

stability result by studying the character of Lipchitz's 

functions. This is in line with Cauchy - Lipchitz's 

theorem. 

This approach is generalizable to any constitutive law 

of the same nature. 
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