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Abstract 

In this paper, we propose and analyze a new trust region algorithm for unconstrained optimization 

problems which is combining a new non-monotone trust region method with non-monotone Wolfe line search 

technique. The new algorithm solves the trust region sub-problem only once at each iteration. The global 

convergence of the new algorithm is proved under some mild conditions. 
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I. INTRODUCTION 

Consider the following unconstrained optimization problem: 

min ( ), ,nf x x RÎ                                                            (1) 

where : nf R R®  is a twice continuously differentiable function.  

For solving (1), trust region methods usually compute kd  by solving the quadratic sub-problem: 

1
min ( ) , || || .

2

T T

k k k k km d f g d d B d d= + + £ D                                      (2) 

where ( )k kf f x=  and ( )k kg f x= Ñ  are the function value and the gradient vector at the current 

approximation iterate kx , respectively, kB  is an n n´  symmetric matrix which may be the exact Hessian 

( )kH x  or the quasi-Newton approximation and 0kD >  is the trust region radius. In this paper, the notation 

×P P denotes the Euclidean norm on 
nR . Some criteria are used to determine whether a trial step kd  is 

accepted.  If not, the sub-problem (2) may be computed several times at each iterate until an acceptable step is 

found. There is no doubt that the repetitive process will increase the cost to solve the problem. 

In order to overcome the above drawback, Nocedal and Yuan [1] put forward a algorithm which 

combining trust region algorithm and line search method for the first time in 1998, then Gertz [2] proposed a 

new trust region algorithm that use Wolfe line search at each iteration to obtain a new iteration point regardless 

of whether kd  is accepted. Both of them improved the computational efficiency by fully using the advantages 
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of two kinds of algorithm. 

Algorithms mentioned above are monotonic algorithm. One of the interesting methods for improving 

the algorithm in optimization is non-monotone techniques. The first non-monotone optimization technique is the 

“watchdog technique”, introduced by Chamberlain et al. in [3] in 1982, in order to overcome the Maratos effect. 

Motivated by this idea, Grippo et al. present a non-monotone line search technique for solving optimization 

problems in [4]. They also proposed a truncated Newton method with a non-monotone line search for 

unconstrained optimization [6]. Besides Deng et al. [5] proposed a non-monotone trust region algorithm in 

which they combined non-monotone term and trust region method for the first time. Due to the high efficiency 

of non-monotone techniques, many authors are interested in working on the non-monotone techniques for 

unconstrained optimization problem [7-12]. In this paper, we present a new non-monotone trust 

region algorithm combining with non-monotone Wolfe-type line search strategy.  

 

II. NON-MONOTONE TERM AND WOLFE-TYPE LINE SEARCH CONDITION 

The general non-monotone form is as follows: 

{ }( ) ( )
0 ( )

( ) max , 0,1, 2,...l k l k k j
j m k

f f x f k-
£ £

= = =                                      

where (0) 0, 0 ( ) min{ , ( 1) 1}m m k M m k= £ £ - +  and 0M ³  is an integer constant. Actually, the 

most common non-monotone ratio is defined as follows: 

( ) ( )

(0) ( )

l k k k

k

k k k

f f x d
r

m m d

- +
=

-
.                                                        (3) 

Some researchers showed that utilizing non-monotone techniques may improve both the possibility of 

finding the global optimum and the rate of convergence [4,13]. However, although the non-monotone technique 

has many advantages, it contains some drawbacks [11, 13]. To overcome those disadvantages, Zhang et al. [13] 

proposed a new non-monotone technique to replace (3). To improve algorithm, Gu et al. [14] introduced another 

non-monotone form. They define 

1

( ) 1;

(1 ) ( ) 2

k

k

k k k k

f x k
D

D f x kh h-

ì =ïï= í
ï + - ³ïî

                                            (4) 

for some fixed (0,1),h Î or a variable kh . At the same time, they have the new non-monotone ratio: 

( )
.

(0) ( )

k k k
k

k k k

D f x d

m m d
r

- +
=

-
                                                        (5) 

In this paper, we determine the step-length 
ka  by sub-sequent Wolfe line search 

( ) ,T

k k k k k k kf x d D g da ba+ £ +                                                   (6) 

( ) .T T

k k k k k kg x d d g da g+ ³                                                      (7) 

The rest of this paper is organized as follows. In Section 3, we introduce the algorithm of 

non-monotone trust region method with line search strategy. In Section 4, we analyze the new method and prove 

the global convergence. Some conclusions are given in Section 5. 
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III. NEW ALGORITHM 

In this paper, we consider the following assumptions that will be used to analyze the convergence 

properties of the below new algorithm: 

(H1) The level set 0 0{ | ( ) ( )}nL x R f x f x= Î £ Ì W,  where 
nRWÎ  is a closed, bounded set.  

(H2) The matrix kB  is a uniformly bounded matrix, i.e. there exists a constant 0b >  such that || ||kB b£  

for all .k KÎ  

(H3) ( )f xÑ  is a Lipschitz continuous function, i.e. there exists a constant 0L >  such that 

|| ( ) ( ) || || ||, , nf x f y L x y x y RÑ - Ñ £ - " Î . 

(H4) { }kD  has the upper bound D . 

(H5) The constant d  in the following algorithm should satisfy { }( )0, min 1,v Ld Î . 

(H6) There exists a constant 0v >  such that 
2|| ||T

kd B d v d³  for all .nd RÎ  

The new algorithm can be described as follows: 

Algorithm 0 

Step 1 An initial point 0

nx RÎ  and a symmetric matrix 0

n nB R ´Î  are given. The constants 0 1,m< <  

0 1,b g< < < 0 1,d< <  1 20 1 ,c c< < <  0 1,h< <  0,M ³  0t >  and 0e >  are also 

given. Compute 0( )f x  and set 0k = . 

Step 2 Compute kg . If  || ||kg e£  then stop, else go to Step 3. 

Step 3 Solve (2) inaccurately to determine kd , satisfying 

   
|| ||

(0) ( ) || || min , ,
|| ||

k
k k k k k

k

g
m m d g

B
t

ì üï ïï ï- ³ Dí ý
ï ïï ïî þ

                                      (8) 

   
|| ||

|| || min , .
|| ||

T k
k k k k

k

g
g d g

B
t

ì üï ïï ï£ - Dí ý
ï ïï ïî þ

                                             (9) 

Step 4 Compute kD  and kr . If kr m³ , go to Step 5. Otherwise, find the step-length ka  satisfying (6) 

and (7), then set 1=k k k kx x da+ +  and update 1 1 1[|| ||, ]k k k kx x c+ +D Î - D , go to step 6. 

Step 5 Set 1=k k kx x d+ + , and 
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[ ]1

2

, if || ||

, , if || ||

k k k

k

k k k k

d

c d+

ì = D < DïïD í
ï Î D D = Dïî

. 

Step 6 Update the symmetric matrix kB , set 1k k= + , go to step 2. 

IV. CONVERGENCE ANALYSIS 

For the convenience of expression, we Let { }kI k K r m= Î ³  and { }kJ k K r m= Î < . 

Obviously, K I J= È  is an infinite subset of the set {0,1,2,...} . 

We need the following lemmas in order to prove the convergence of the new algorithm. 

Lemma 1 Suppose that H(1)-(H4) hold and the sequence { }kx  be generated by Algorithm 0, and there is a 

0e >  such that ||g ||k e³ . Then for all k JÎ , there exists a constant 0a >  such that ka a> . 

Proof. From (7) and (H3), we have 

   
2|| || ( ( ) ) ( 1) 0T T

k k k k k k k k kL d g x d g d g da a g³ + - ³ - > .                             (10) 

Thus, we can conclude that  

2 2

( 1) | |(1 )
=

|| || || ||

T T

k k k k
k

k k

g d g d

L d L d

g g
a

- -
³ .                                             (11) 

This inequality, together with (H2) , (H4) and (9), lead us to have  

{ }
2 2

min ,|| || || ||(1 ) || || (1 ) 1
min ,

k k kk
k

k

g Bg

L L b

g t g t e e
a

ì üD- - ï ïï ï³ ³ í ý
ï ïD D Dï ïî þ

.                   

(12) 

Let 
2

(1 ) 1
= min ,

L b

g t e e
a

ì ü- ï ïï ï
í ý
ï ïD Dï ïî þ

, we complete the proof. 

Lemma 2 Suppose that (H3), (H5) and (H6) hold, and the sequence { }kx  be generated by Algorithm 0. Then 

for all k JÎ , we have  

   1 1 0.
2

T

k k k k

L
f f g d

v

d d
+

æ ö
÷ç- £ - £÷ç ÷çè ø

                                                (13) 

Proof. The proof is similar to Lemma 3.1 in [15] 

Lemma 3 (See Lemma 2 in [16]) Suppose that the sequence { }kx  be generated by Algorithm 0. Then we have  

1 1 , .k k kf D D k+ +£ £ " Î ¥                                          

Lemma 4 Suppose that (H1) holds and the sequence { }kx  is generated by Algorithm 0. Then, the sequence 
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{ }kD  is convergent.  

Proof. Lemma 3 together with (H1) imply that 

1 1 1 1. . : k k ks t n f D D D fl l + +$ " Î £ £ £ £ ×××£ £¥ . 

This shows that the sequence { }kD  is convergent. 

Lemma 5 Suppose that (H3), (H5), (H6) hold and the Algorithm 0 generates an infinite sequence { }kx . Then 

for all k Î ¥ , there exists a constant 0j >  such that    

1

|| ||
(1 ) || || min , ,

|| ||

k
k k k k

k

g
D D g

B
h j+

ì üï ïï ï£ - - Dí ý
ï ïï ïî þ

                                               

where min , 1 .
2

L

v

dt d
j mt

ì üæ öï ïï ï÷ç= - ÷í ýç ÷çï ïè øï ïî þ
 

Proof. We still consider two cases: 

Case1. k IÎ . From (7) and (8), we have  

1

|| ||
[ (0) ( )] || || min , 0.

|| ||

k
k k k k k k k

k

g
D f m m d g

B
m mt+

ì üï ïï ï- ³ - ³ D ³í ý
ï ïï ïî þ

 

Then, we can obtain that 

1

|| ||
|| || min , .

|| ||

k
k k k k

k

g
f D g

B
mt+

ì üï ïï ï£ - Dí ý
ï ïï ïî þ

                                            

Case2. k JÎ . From Lemma2, Lemma 3 and (9), we have 

   

1 1
2

|| ||
1 || || min , .

2 || ||

T

k k k k

k
k k k

k

L
f f g d

v

gL
D g

v B

d d

dt d

+

æ ö
÷ç£ + - ÷ç ÷çè ø

ì üæ ö ï ïï ï÷ç£ - - D÷ í ýç ÷ç ï ïè ø ï ïî þ

 

Let min , 1
2

L

v

dt d
j mt

ì üæ öï ïï ï÷ç= - ÷í ýç ÷çï ïè øï ïî þ
, we can conclude 

   1

|| ||
|| || min , .

|| ||

k
k k k k

k

g
f D g

B
j+

ì üï ïï ï£ - Dí ý
ï ïï ïî þ

                                 (14) 

Considering (4) and (14), we obtain for all k  
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1 1(1 )

|| ||
(1 ) || || min ,

|| ||

|| ||
(1 ) || || min , .

|| ||

k k k

k
k k k k

k

k
k k k

k

D D f

g
D D g

B

g
D g

B

h h

h h j

h j

+ += + -

æ öì üï ï ÷ç ï ï ÷£ + - ç - Dí ý÷ç ÷ï ï ÷çè øï ïî þ

ì üï ïï ï= - - Dí ý
ï ïï ïî þ

 

Lemma 6 Suppose that (H1)-(H6) hold, if there exists a constant 0e >  such that ||g ||k e³ , then for all 

k Î ¥ , we have 

{ }lim min , 0,k k
k

Me
® ¥

D =                                                     (15) 

where 
1

=1 max || || .k k
i k

M B
£ £

+  

Proof. From Lemma 5 and the definition of kM , we have 

   { }1 (1 ) min , .k k k kD D Mh j e e+ - £ - - D                                         (16) 

Using the above inequality and Lemma 4, we have (15) holds immediately.       

Lemma 7 Suppose Lemma 1 and Lemma 3 hold, then for all sufficiently large k , there exists a constant 

( )1 0,1c Î  such that 

{ }1 min 1, (1 )k kc Mt e mD ³ - .                                                                       

Proof. The proof is similar to Lemma 3.8 in [15], we omit it for convenience. 

Theorem 8 Suppose that (H1)-(H6) hold and { }kB  satisfies 

 

0

1

k kM

+ ¥

=

= + ¥å .                                                            (17) 

Then sequence { }kx  generated by Algorithm 0 satisfies 

lim inf || || 0.k
k

g
® ¥

=  

Proof. Assume that (17) does not hold, then for all k Î ¥ , there exists a constant 0e >  such that 

||g ||k e³ . From Lemma 7, we have 

   { }min , ,k k kM Me gD ³                                                     (18) 

where { } { }1 1 1 1min , (1 ), min , (1 ) .c c c cg t e m e t e m= - = -  

From (16) and (18), we have 

   ( ) { }1

1 1 1

(1 ) min , (1 ) .k k k k k

k k k

D D M Mh j e e h j e g
¥ ¥ ¥

+

= = =

- ³ - D ³ -å å å  

Using the above inequality and Lemma 4, we have  
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   ( )1

0 1

1 1

(1 )
k k

k kk

D D
M h j eg

+ ¥ ¥

+

= =

£ - < ¥
-

å å . This contradicts (17). The proof is completed. 

V. CONCLUSIONS 

In this paper, a variant non-monotone trust region algorithm for solving unconstrained optimization 

problems is proposed. Unlike traditional trust region method, the proposed algorithm does not reject a trial step, 

but performs a new non-monotone Wolfe line search in direction of the rejected trial step in order to avoid 

resolving the trust region sub-problem instead. We analyzed the properties of the algorithm and proved the 

global convergence theory under some mild conditions.  

ACKNOWLEDGMENTS 

This work is supported by the national natural science foundation of China (61473111) and the Natural 

Science Foundation of Hebei Province (Grant No. A2014201003, A2014201100). 

REFERENCES 

[1] J. Nocedal, Y.X. Yuan, Combining trust region and line search techniques, in: Y. Yuan (Ed.), Advanced in nonlinear programming, 

Kluwer Academic Publishers, Dordrecht, 1998, pp. 153-175. 

[2] E. Michael Gertz, A quasi-Newton trust region method, Math programming, 2004, 100(3): 447-470. 

[3] R.M. Chamberlain, M.J.D. Powell, The watchdog technique for forcing convergence in algorithm for constrained optimization, 

Mathematical Programming Study 16 (1982) 1-17. 

[4] L. Grippo, F. Lampariello, S. Lucidi, A nonmonotone line search technique for Newton's method, Society for Industrial and Applied 

Mathematics 23 (1986) 707-716. 

[5] N.Y. Deng, Y. Xiao and F.J. Zhou, Nonmonotone trust region algorithm, Journal of Optimization Theory and Application 76 (1993) 

259-285. 

[6] L. Grippo, F. Lampariello, S. Lucidi, A truncated Newton method with nonmonotone line search technique for unconstrained 

optimization, J. Optim, Theory Appl.60(1989)401-419. 

[7] Ph.L. Toint, An assessment of nonmonotone linesearch technique for unconstrained optimization, Society for Industrial and Applied 

Mathematics, 17 (1996) 725-739. 

[8] Ph. L. Toint, Non-monotone trust-region algorithm for nonlinear optimization subject to convex constraints, Mathmatical 

Programming 77 (1997) 69-94. 

[9] W.Y. Sun, Nonmonotone trust region method for solving optimization problems, Applied Mathematics and Computation 156 (2004) 

159-174. 

[10] J.T. Mo, K.C. Zhang, Z.X. Wei, A nonmonotone trust region method for unconstrained optimization, Applied Mathematics and 

Computation 171(2005) 371-384. 

[11] M. Ahookhosh, K. Amini, An efficient nonmonotone trust-region method for unconstrained optimization, Numer Algor(2012) 59: 

523-540. 

[12] S. Huang, Z. Wan, X.H. Chen, A new nonmonotone line search technique for unconstrained optimization, Numer Algor (2015) 68: 

671–689. 

[13] H.C. Zhang, W.W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim. 14 

(4) (2004) 1043-1056. 

[14] N.Z. Gu, J.T. Mo, Incorporating nonmonotone strategies into the trust region for unconstrained optimization, Computers and 

Mathematics with Applications 55 (2008) 2158–2172. 

[15] J.T. Mo, C. L, S.C. Yan, A nonmonotone trust region method with fixed stepsize, Journal of Qufu Normal University Vol. 32, No. 3 

(2006) 30-34. 

[16] C.Y. Li, Q.H. Zhou, A new non-monotone trust region method with fixed step-size for unconstrained optimization, Scholars Journal of 

Engineering and Technology(2015) 3(5A): 529-534. 


