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Abstract 

In this paper, we propose and analyze a new non-monotone self-adaptive trust region method based on 

simple conic model for unconstrained optimization. Unlike the traditional non-monotone trust region method, 

the sub-problem in our method is a simple conic model, and the Hessian of the objective function is 

approximated by a scalar matrix. The trust region radius is adjusted with a new self-adaptive adjustment strategy, 

which makes use of the information of the previous iteration and current iteration. 

 

Keywords: large scale optimization, non-monotone technique, self-adaptive trust region method, conic model, 

global convergence 

 

I. INTRODUCTION 

Consider the following unconstrained optimization problem: 

 min ( ), ,nf x x RÎ   (1) 

Where : nf R R® is a twice continuously differentiable function. Throughout this paper, we use the 

following notation: .  is the Euclidean norm. ( ) ( ) ng x f x R= Ñ Î  and ( ) n nH x R ´Î  are the gradient 

and Hessian matrix of f evaluated at x , respectively. 
2( ), ( ), ( )k k k k k kf f x g g x H f x= = = Ñ  and kB  

is a symmetric matrix which is either kH  or an approximation of kH . 

The conic model was first proposed by Davidon [3] and Sorensen [4] in the following form: 
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. (2) 

Due to the robust properties and the global convergence of the trust region methods, Di and Sun [1] proposed a 

conic trust region sub-problem for solving problem (1) as follow: 
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where 
n

kb R  is a horizontal vector. They put forward the necessary and effectual optimization conditions 

for the trust region sub-problems. Sun and Xu [2] proposed a filter trust region method based on conic model for 

unconstrained optimization. 

Some researchers showed that utilizing non-monotone techniques improve both the possibility of 

finding the global optimum and the rate of convergence [5, 6]. The general non-monotone form follows: 

{ }( ) ( )
0 ( )

( ) max , 0,1, 2,...l k l k k j
j m k

f f x f k-
£ £

= = =
 

Where (0) 0, 0 ( ) min{ , ( 1) 1}m m k M m k= £ £ - + , and 0M ³  is an integer constant. 

However, although the non-monotone technique has many advantages, Zhang et al. [6] found that it 

still has some drawbacks and they proposed a new non-monotone form kC . Gu et al. [7] introduced another 

non-monotone form in 2008 and the new form was computed easier than kC . They define 

  

1

( ) 1;

(1 ) ( ) 2.

k

k

k k k k

f x k
D

D f x kh h-

ì =ïï= í
ï + - ³ïî

      (4) 

Where (0,1)kh Î . 

Based on an interpolation of the secant equation and on the Wolfe’s line search conditions, Andrei [10] 

used the scalar matrix k I  to approximate the Hessian matrix, and derived a new scaled conjugate gradient 

algorithm. Zhou and Zhang [8] proposed a non-monotone adaptive trust region method based on simple 

quadratic model for unconstrained optimization. 

The rest of this paper is organized as follow. In section 2, we propose our non-monotone adaptive trust 

region method based on simple conic model for unconstrained optimization. The global convergences of the 

algorithm are established in section 3. Finally, we give some conclusions in section 4. 

 

II. NON-MONOTONE ADAPTIVE TRUST REGION ALGORITHM BASED ON SIMPLE CONIC 

MODEL 

A. Algorithm model 

In this subsection, we discuss how to construct the simple conic model at each iteration. Like Andrei 

[10], at the k-th iteration, we consider using k I  as an approximation of kB , then, sub-problem (3) becomes 

  
2

( )
min ( ) ( )

1 2(1 )

. .

T T

k k
k k T Td

k k

k

g d x d d
c x d f x

b d b d

s t d
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 
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.  (5) 

The conic model ( )kc x d  should satisfy the following interpolation conditions [9]: 

 1 1 1 1( ) ( ), ( )k k k kc x f x c x g      ,  (6) 
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Where 11 T

k kb d   , 
 2

1 1 1
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g d
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 , 1 0  . 

Updating the ( )kx  is to keep ( )kx I  positive definite (see [11]). 

B. Solution of sub-problem (5) 

In this subsection, we discuss the solution of sub-problem (5). The strict minimize of the conic model function 

( )kc x d  is 

( )

N k
k T

k k k

g
d

x b g
 


,                                                                                   

and 
C

k k kd g   (see [11]). As we know, Newton method has a local quadratic convergence, and we can 

expect that the numerical performance behaves better by using 
N

kd  as much as possible. We compute the 

sub-problem (5) as follows,  

 if 
N

k kd   , then set 
N

k kd d , otherwise, set 
C

k kd d . 

C. Algorithm  

Now, we state the non-monotone adaptive trust region algorithm based on simple conic model for unconstrained 

optimization. 

Algorithm 1 

Step 0 0 0 1 2 3, 0,0 1nx R          , 1 2 30 1 ,0 1, 0, 0.              

   0 1, 0, 0,1 , 0,1n

kb R       , Set 0 00, ( ) 1, 0.k x D    

Step 1 If kg  , stop, and kx  is an approximate solution. Otherwise, go to step 2. 

Step 2 Solve the conic trust region sub-problem(5) for kd by (2.2). 

Step 3 Compute 

( ) ( ),

Pr ( ) ( ) ( ),

k k k k

k k k k

Ared d D f x d

ed d c x c x d

  

  
 

( )
.

Pr ( )

k
k

k

Ared d

ed d
 

 

Step 4 If 1k  , set 1k k   , go to step 2. Otherwise, go to step 5. 

Step 5 Set 1k k kx x d   . 

Step 6 Compute 1( )kx  , if 1( )kx    or 1
1( )kx
  , set 1( ) .kx    



International Journal of Recent Engineering Science (IJRES), 

ISSN: 2349-7157, Volume 2 Issue 3 May to June 2015 

16 
 www.ijresonline.com 

Step 7 Compute 1

1( )
k

k
k

g
x





   ,                    

updating the trust region radius 1k  as follows. 

 3 3

1 2 3

2 2

max , , .

, ,

, .

k k k

k k k

k k
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  

  



  


    
  

 

Step 8 Updating 1 1,k kb D  , set 1k k  , go to step 1. 

 

III. CONVERGENCE ANALYSIS 

(A1) : nf R R  is twice continuously differentiated and bounded below on the level set 

 1 1( ) ( ) ( ) .L x x f x f x   

(A2) The sequence  kx  generated by algorithm 1 is contained in a bounded closed set   containing 

1( ).L x   

(A3) Suppose that there exist two positive constants max  and bM  such that      

 max , , .k k bb M k      (7)  

   Assumptions (A1) and (A2) mean there exist two positive constants gM  and HM   such that  

  
2

0( ) , ( ) . ( ).g Hg x M f x M x L x       (8) 

Lemma 1 (See Lemma 1 in [11]) Suppose that assumptions (A1)-(A3) hold, and that kd  is the solution of (5). 

Then we have  

2

1
Pr ( ) ( ) ( ) min ,

2 ( )

k

k k k k k k

k

g
ed d c x c x d g

x




 
     

 
,  (9) 

   where 2

max

1

1 bM
 

 
 is a constant. 

Lemma 2 Suppose that the sequence  kx  is generated by algorithm 1. Then the inequality 

1 1( ) ,k k kf x D D k    .                                                     (10)  

Holds, where kD  is defined in (4) Also, the sequence  kx  remains in 1( )L x . 
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Proof. From the definition of kD , we have 

 1 1 1( )k k k kD f D fh+ + +- = -  and 1 1(1 )( ).k k k kD D f Dh+ +- = - -                 (11)                     

We consider two cases: 

Case1. k IÎ . 

From algorithm 2 and (9), we have  

1 1 1 2

|| ||1
[c (x ) (x )] || || min , 0.

2 | (x )

k
k k k k k k k k k

k

g
D f c d gh h d

g
+

ì üï ïï ï- ³ - + ³ D ³í ý
ï ïï ïî þ  

Therefore, 

1 1 1( ) 0 ,k k k kD f D fh+ + +- = - ³
 

 1 1(1 )( ) 0 .k k k kD D f Dh+ +- = - - £   (12)                                 

Case2. k JÎ .  

If 1k I- Î , then from (9) and (12), we have 1 1k k kf D D+ +£ £ . 

If 1k J- Î , let { 1 , }M i i k k i I= < £ - Î . If M = Æ , then from (4) (6) and Lemma 1, we 

have 1 1 1k kf f f D+ £ £ £ =L . Now we will use mathematical induction to prove 1k kD D+ £ . 

For 1k  , 
12 1 2 1 1 1(1 ) (1 )D D f f f f Dh h h h= + - £ + - = = . For ,k n  we suppose that we have 

1 .n nD D+ £  

For 1k n   2 1 2 1 1(1 ) (1 )n n n n n nD D f D f Dh h h h+ + + + += + - £ + - = . 

So we get 1k kD D+ £ . From (11) and 0 1,h< <  we know 1k kf D+ £ . Thus,  

 1 1 1 1 1(1 ) (1 )k k k k k kD D f f f fh h h h+ + + + += + - ³ + - = .  (13)                             

On the other hand, if M ¹ Æ , let { }min |m i i M= Î . Then from (6) and Lemma 1, we 

have 1 1k k k mf f f+ - +£ £ £L . Obviously, k m I- Î , then we get 1 1k m k m k mf D D- + - + -£ £  from Case 1. 

Thus, 

2 1 2 1 1(1 ) (1 )k m k m k m k m k m k mD D f D f Dh h h h- + - + - + - - + - += + - £ + - = , by the induction principle, we 

have 1k kD D+ £ . Finally we can get (13). 

Both Case 1 and Case 2 imply that 1 1k k kf D D+ +£ £ . So we complete the proof. 

Lemma 3 (See Lemma 4 in [11]) The step 2-step 4-step 2 in algorithm 1 are well defined. 
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Lemma 4 Suppose that assumptions (A1)-(A1) hold, then we have 

    2( ) ( ) ( ) ( )k k k k k k kf x f x d c x c x d M       , 

where              
2

1 1
max , .

1 2 2(1 )

g b H
M M M

M 
  

 
    

   
 

Lemma 5 (See Lemma 5 in [11]) Suppose that assumptions (A1)-(A2) hold, and that there exist a constant 

0   such that kg  , then there exists a constant 0lbd   such that k lbd   . 

Lemma 6 Suppose that (A1) holds and the sequence { }kx  is generated by Algorithm 1. Then, the sequence 

{ }kx  is convergent.  

Proof. Lemma 2 together with (A1) imply that 

1 1 1 1. . : k k ks t n f D D D fl l + +$ " Î £ £ £ £ ×××£ £¥ . 

This shows that the sequence { }kx  is convergent. 

Theorem 7 Suppose that assumptions (A1)-(A3) hold. Then the sequence  kx  generated by algorithm 2 

satisfies inf 0.k
k
lim g


   

Proof. If there are finitely many successful iterations, then the conclusion holds obviously from algorithm 1. 

First we can prove when 0kg   , there must be 0.klim    

According to the step 6 of algorithm 1, we know that the sequence  ( )kx  is uniformly bounded, i.e., 

 
1

0 min , ( ) max , , ,kx m k   


 
     

   

where 0   is a constant. So, we have 

1 1 2 1 2

1 1
( ) Pr min , min , .

2 ( ) 2

k

k k k k k k k

k

g
D f x d ed g

x m


     



   
         

    

Because kf  is bounded, so kD  is also bounded. Noting the  1kY k    , 

so we have 

    1 1 2

1

1
( ) ( ) Pr min , .

2
k k k k k k k k

k k Y k Y k Y

D f x d D f x d ed
m


   



   

 
          

 
    So we 

have min , ,k

k Y m





 
   
 

  moreover, Y  ,  thus 0.k
k
lim


   
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Next, we will prove inf 0k
k
lim g


 . Actually, we prove this result by a contradiction. Suppose that when k  

is very big, and 0,kg    

1 1

2 2

1 2

( ) ( ) ( ) ( ) ( ( ) ( ))
1

Pr Pr

2
.

Pr
min ,

k k k k k k k

k k

k k

k
k

f x f x f x f x c x c x d

ed ed

M M

ed

m


 

     
 

 
 

 
 
   

Then we have 
( ) ( ) ( )

,
Pr Pr

k k k k k k
k

k k

D f x d k x f x d

ed ed


   
   

and ,k   then 
( ) ( )

1.
Pr

k k k

k
k

f x f x d
lim

ed

 
  

So 1,k   from algorithm 1 and Lemma 5, when k  , exists a constant 0lbd  , such that 

0k lbd    , this contradicts 0k
k
lim


  .  

 

IV. CONCLUSIONS  

In this paper, we propose a non-monotone adaptive trust region method based on simple conic model 

for unconstrained optimization. The global convergences of the proposed algorithm are established. Our method 

is efficient for solving large scale optimization problems. The sub-problem incorporates more information which 

is useful to the algorithm. The Hessian of the objective function or its approximation is approximated by a scalar 

matrix, which needs less memory and computational efforts. 
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