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Abstract

In this paper, we propose and analyze a new non-monotone self-adaptive trust region method based on
simple conic model for unconstrained optimization. Unlike the traditional non-monotone trust region method,
the sub-problem in our method is a simple conic model, and the Hessian of the objective function is
approximated by a scalar matrix. The trust region radius is adjusted with a new self-adaptive adjustment strategy,
which makes use of the information of the previous iteration and current iteration.
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I. INTRODUCTION
Consider the following unconstrained optimization problem:

min f(x), xI R", 1)
Where f : R" ® Ris a twice continuously differentiable function. Throughout this paper, we use the
following notation: ||| is the Euclidean norm. g(x)= Nf ()T R" and H(X)T R™" are the gradient
and Hessian matrix of f evaluated at X , respectively. f, = f(x,), 9, = 9(%x.), H, = N*f(x,) and B,

is a symmetric matrix which is either H, or an approximation of H, .

The conic model was first proposed by Davidon [3] and Sorensen [4] in the following form:

T T
. d 1 dBd
ming(x, +d)=f(x )+ ng += . )
d 1+bd 2(1+b]d)
Due to the robust properties and the global convergence of the trust region methods, Di and Sun [1] proposed a
conic trust region sub-problem for solving problem (1) as follow:
gid 1 _d'Bd
T n 2
1+bd  2(1+p0d) @3)

mdin(p(xk +d)=f(x )+

st.d|<A,
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where bk e R" is a horizontal vector. They put forward the necessary and effectual optimization conditions

for the trust region sub-problems. Sun and Xu [2] proposed a filter trust region method based on conic model for
unconstrained optimization.

Some researchers showed that utilizing non-monotone techniques improve both the possibility of
finding the global optimum and the rate of convergence [5, 6]. The general non-monotone form follows:

fig = FOgo)= max {f.;} k=012..

0f j£ m(k)
Where m(0)=0, 0£ m(k) £ min{M, m(k- 1)+ 1} ,and M 3 0O is an integer constant.
However, although the non-monotone technique has many advantages, Zhang et al. [6] found that it

still has some drawbacks and they proposed a new non-monotone formC, . Gu et al. [7] introduced another

non-monotone form in 2008 and the new form was computed easier than C, . They define

f (%) k=1

(4)
hD,.;+ - h)f(x) k* 2

D, =]
i

where h 1 (0,2).
Based on an interpolation of the secant equation and on the Wolfe’s line search conditions, Andrei [10]
used the scalar matrix y, | to approximate the Hessian matrix, and derived a new scaled conjugate gradient

algorithm. Zhou and Zhang [8] proposed a non-monotone adaptive trust region method based on simple
quadratic model for unconstrained optimization.

The rest of this paper is organized as follow. In section 2, we propose our hon-monotone adaptive trust
region method based on simple conic model for unconstrained optimization. The global convergences of the
algorithm are established in section 3. Finally, we give some conclusions in section 4.

Il. NON-MONOTONE ADAPTIVE TRUST REGION ALGORITHM BASED ON SIMPLE CONIC
MODEL
A. Algorithm model
In this subsection, we discuss how to construct the simple conic model at each iteration. Like Andrei

[10], at the k-th iteration, we consider using y, | as an approximation of B, , then, sub-problem (3) becomes

gy d +7(Xk)de
1+b'd  2(1+b]d)*. )

mdin c(x, +d)=f(x)+
st. [d]<aA,

The conic model C(X, +d) should satisfy the following interpolation conditions [9]:

C(Xk—l) =f (Xk—l)’ VC(Xk_l) =Gk (6)
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7/(Xk): I:zuz(f(Xk—l)_f(xk))+ﬂ(1+nk)g;—dk—l]'

2
SH

O - f f
Where z=1-b7d, ,, 7, = —H [ (%1) = F (X )] H9c by L 5,>0.

MOy dk—l

Updating the »(X,) istokeep (X, ) positive definite (see [11]).

B. Solution of sub-problem (5)
In this subsection, we discuss the solution of sub-problem (5). The strict minimize of the conic model function

c(x, +d) is
de — gk
() +blg,

and dkc =-—7,0, (see [11]). As we know, Newton method has a local quadratic convergence, and we can

expect that the numerical performance behaves better by using de as much as possible. We compute the
sub-problem (5) as follows,

- N N - C

if Hdk HSAk ,thenset d, =d, , otherwise, set d, =d, .

C. Algorithm

Now, we state the non-monotone adaptive trust region algorithm based on simple conic model for unconstrained
optimization.

Algorithm 1

Step0 X, €R",A,>0,0<7,<n,<n, <1, 0<y, <y,<l<y,0<e<le>0,0>0.
b, €R", 9, >O,0¢e[0,1],77k 6(0,1), Set k=0,y(x,)=1D,=0.
Step 1 If ||gk||S5,stop, and X, isan approximate solution. Otherwise, go to step 2.

Step 2 Solve the conic trust region sub-problem(5) for dk by (2.2).

Step 3 Compute

Ared(d,) =D, — f(x, +d,), _ Ared(d,)
Pred(d,) =c(x)—c(x +d,), “*  Pred(d,)

Step4If p, <m,set A, =y,A,, go tostep 2. Otherwise, go to step 5.
Step 5 Set X, =X, +d,.
Step 6 Compute ¥(X,.,),if ¥(X.,) <€ or y(X.,) = % yset (X)) =6.
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Step 7 Compute A, :”g“%x )
k+1

updating the trust region radius A, ,; as follows.

maX{Aw]/s”dk”}’Pk =
Ava =001, S p <173,
72D P <1,

Step 8 Updating b,.,, D, .;,set kK=Kk+1, gotostep 1.

I11. CONVERGENCE ANALYSIS

(A1) f:R"—>R is twice continuously differentiated and bounded below on the level set
L(x) ={x|f ()< f(x)}.

(A2) The sequence {Xk} generated by algorithm 1 is contained in a bounded closed set {2 containing

L(x).
(A3) Suppose that there exist two positive constants A, and M, such that

A S A [be ] < My, k. )

max !

Assumptions (A1) and (A2) mean there exist two positive constants Mg and M such that
a0 <M, |[V* £ ()] < My, ¥x € L(x,). 8)

Lemma 1 (See Lemma 1 in [11]) Suppose that assumptions (A1)-(A3) hold, and that dk is the solution of (5).

Then we have

1 . g
Pred(d,)=c(x,)—c(x, +d ) > 552 lag| mm{Ak, ﬂ(;k”)} 9)

1

where 6, = A M is a constant.
+ b

max

Lemma 2 Suppose that the sequence {Xk} is generated by algorithm 1. Then the inequality
f(%.,) <D, <D, Vk. (10)

Holds, where D, is defined in (4) Also, the sequence {Xk} remains in L(Xi)
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Proof. From the definition of D, , we have

Dii- fr=h(Dy- fi.,) and D,,,- D = Q- h)(fi,;- D). (11)

We consider two cases:
Casel. k1 I.
From algorithm 2 and (9), we have

Dk' k+13 h [Ck(Xk) Ck(X +d )]3 hd ”gk ”mmka,lH?kll)g

Therefore,
Dk+1 k+1 h(D k+1)3 O’
D..- D,=(@- h)(f.,,- D)£ 0. (12)
Case2.k1 J.
Ifk- 11 I, then from (9) and (12), we have f,,, £ D,,, £ D,.
If k- 11 J, Ietl\/|={i|1< i£ k,k-il1}. 1f M=/, then from (4) (6) and Lemma 1, we
have f,,, £ f, £ L £ f = D,. Now we will use mathematical induction to prove D,,, £ D, .

For k=1, D,=hD,+ (- h)f,£ hf,+ (@- h)f,= f = D,. For k=n, we suppose that we have

D..£ D

n+1 n*

For k=n+1 D,,,= hD,.,+ (I- h)f.,, £ hD_+ (1- h)f

n+2 n+1 +1'

Soweget D,,, £ D,.From(1l)and 0< h<1, weknow f, £ D,.Thus,
k+1 hD + (l h) fk+1 fk+1+ (1' h) fk+1: fk+1' (13)

On the other hand, if M*' Z&, let m=min{i|il M} . Then from (6) and Lemma 1, we

have f,,, £ f £L £ f_, ... Obviously, k- mi I thenweget f,_ ., £D_ .., £ D_, fromCase 1.
Thus,
D..,=hD_ .t @ W)f,_ .., £hD_,+ @ h)f,_...,= D._,.. by the induction principle, we

have D,,, £ D, . Finally we can get (13).

Both Case 1 and Case 2 imply that f,,, £ D,,, £ D, . So we complete the proof.
Lemma 3 (See Lemma 4 in [11]) The step 2-step 4-step 2 in algorithm 1 are well defined.
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Lemma 4 Suppose that assumptions (Al)-(A1) hold, then we have

[f(x)— f 4 +d)]-[c(x)—c(x +d)] <MAZ,

M M
where M=—2 b+'\/IH + 1 zmax{l,e}.
1-y 2 21-yp) g

Lemma 5 (See Lemma 5 in [11]) Suppose that assumptions (A1)-(A2) hold, and that there exist a constant

£>0 suchthat |g,]|> &, then there exists a constant A,y >0 suchthat A, > A,
Lemma 6 Suppose that (A1) holds and the sequence {Xk} is generated by Algorithm 1. Then, the sequence

X, § is convergent.
{3}

Proof. Lemma 2 together with (A1) imply that
$I st"nT¥:1£f,,£D,,£D£xLfDE f.

This shows that the sequence {X,} is convergent.
Theorem 7 Suppose that assumptions (A1)-(A3) hold. Then the sequence {Xk} generated by algorithm 2
satisfies lim inf ||gk||:O.

K—+0

Proof. If there are finitely many successful iterations, then the conclusion holds obviously from algorithm 1.

First we can prove when ||g, [ > & >0, there mustbe limA, =0.

According to the step 6 of algorithm 1, we know that the sequence {y(xk)} is uniformly bounded, i.e.,
. 1
0<min{e, 6} <y(x,)<max4=,6=m,VK,
&
where » >0 is a constant. So, we have

1 . g 1 .
D, - f(x +d,)>nPred, > 577152 ||gk||m|n{Ak,J(—):(”)} > 5771525 mln{Ak,%}.

Because f, isbounded,so D, isalso bounded. Noting the Y = {k|pk > 771},

so we have

+00 >§:[Dk —f(x +d)]=> Z[Dk — f(x +d,)] 22771 Pred, 22%771525min{Ak,%}.80 we
k=1

keY keY keY

. & .
have Zmln{Ak,—}<+oo, moreover, |Y|—>+oo, thus lim A, =0.
m

K —-+o0
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Next, we will prove lim inf ||gk|| =0. Actually, we prove this result by a contradiction. Suppose that when k
k—>-+o0

is very big, and ||gk|| >g>0,

PO =) 4|
Pred, -

_ MA: - 2MA?
Pred, n0, min{Ak,;}

Dk — f(xk +dk) > k(Xk)_ f (Xk +dk)
Pred, - Pred,

f (Xk) —f (Xk+1) _(C(Xk) _C(Xk +dk))|
Pred, ‘

Then we have p, =

and K — oo, then lim f(xk)_f(xk+dk)=
ke Pred,

1.

So p, =n,, from algorithm 1 and Lemma 5, when K — oo, exists a constant A,y >0, such that

A, = Ay =0, this contradicts  lim A, =0.

k—>+o0

IV. CONCLUSIONS
In this paper, we propose a non-monotone adaptive trust region method based on simple conic model
for unconstrained optimization. The global convergences of the proposed algorithm are established. Our method
is efficient for solving large scale optimization problems. The sub-problem incorporates more information which
is useful to the algorithm. The Hessian of the objective function or its approximation is approximated by a scalar
matrix, which needs less memory and computational efforts.
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