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 Abstract  

 In order to improve the efficiency and 

classification ability of Support vector machines (SVM) 

based on stochastic gradient descent algorithm, three 

algorithms of improved stochastic gradient descent 

(SGD) are used to solve support vector machine, which 

are Momentum, Nesterov accelerated gradient (NAG), 

RMSprop. The experimental results show that the 

algorithm based on RMSprop for solving the linear 

support vector machine has faster convergence speed 

and higher testing precision on five datasets (Alpha, 

Gamma, Delta, Mnist, Usps). 
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I. INTRODUCTION 

Stochastic gradient descent (SGD) is a simple 

and effective method, many works focus on designing 

variants of SGD. There are some methods that solve 

SVM problem by using variants of SGD. Some popular 

methods include the Pegasos method[1], Pegasos 

performed stochastic gradient descent on the primal 

objective with a carefully chosen step size, which 

improves and guarantees convergence. There are some 

methods for SVM that are proven to converge linearly 

on strong convex problems. Such as the stochastic 

gradient descent with Barzilai-Borwein update step for 

SVM[2], Budgeted Stochastic Gradient Descent for 

Large-Scale SVM Training[3], Bi-level stochastic 

gradient for large-scale support vector machine[4], and 

the stochastic variance reduced gradient method[5].  

 

Some recent works that discuss the improved 

approaches for SGD[6-12], such as quasi-Newton 

stochastic gradient descent, accelerated proximal 

stochastic dual coordinate ascent, stochastic dual 

coordinate ascent methods, scalability of stochastic 

gradient descent based on smart sampling techniques, 

and beyond the regret barrier algorithms for stochastic 

strongly convex optimization.  

 

In this paper, we focus on the problem of 

improving the efficiency and classification ability of 

Support vector machines (SVM) based on stochastic 

gradient descent algorithm, three algorithms of 

improved stochastic gradient descent (SGD) are used to 

solve support vector machine, which are Momentum, 

Nesterov accelerated gradient (NAG), RMSprop. The 

experimental results show that the algorithm based on 

RMSprop for solving the linear support vector machine 

has faster convergence speed and higher testing 

precision on five datasets (Alpha, Gamma, Delta, Mnist, 

Usps). 

 

II. STOCHASTIC GRADIENT DESCENT FOR 

SVM  

In order to deal with the large-scale data 

classification problems, we describe the algorithms of 

stochastic gradient descent for SVM. 

Consider a binary classification problem with 

examples   = , , 1, ,i iS y i Nx  , where instance 

d

i Rx  is a d-dimensional input vector and 

 1, 1iy    is the label. Training an SVM classifier 

( ) sgn( )Tf x w x using S, where w is a vector of 

weights associated with each input, which is formulated 

as solving the following optimization problem 

    
2

min ; ,
2

t t tp l y


 w w w x  ,            (1) 

where     ; , max 0,1 T

t t t tl y y w x w x   is the hinge 

loss function and 0   is a regularization parameter 

used to control model complexity.  

SGD works iteratively. It starts with an initial 

guess of the model weight
1w , and at t-th round it 

updates the current weight tw as 
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which is the indicator function which takes a value of 

one if its argument is true (w yields non-zero loss on 

the example (x, y)), and zero otherwise. We then update 

using a step size of 1/ ( t)t  . After a predetermined 

number T of iterations, we output the last iterate wt+1.  

Then, the decision function for SVM with 

SGD is as follows 
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1 1( ) sgn( )T

t tf  x w x
                                 (3) 

 

III. IMPROVED STOCHASTIC GRADIENT 

DESCENT ALGORITHM FOR SVM 

 

Stochastic gradient descent parameter update 

rule:
 

    ; ,
i i

J x y     
                     

  (4) 

In the following, we present three adaptive 

learning rate SGD algorithms for SVM. It is especially 

suited for learning from large datasets.  

 

A.  Momentum SVM 

Momentum [13] is a method that helps 

accelerate SGD in the relevant direction and dampens 

oscillations. We use Momentum method to optimize 

SVM.  

The Momentum SVM update rule: 

 1

1 1

w

w w

t tt t t t i i

t t t

v v y x

v

   

 

  

                

     (5) 

 

Algorithm 1：Momentum SVM 

1. Input： S，λ，T,  ,    

2. Initialize： 1w 0


 
， 1 0, 0.9v  


  

3.  for 1, ,t T   

4.     choose   1,..., S  ti   uniformly at random
 
   

5.     if  w , 1,   then
t ti t iy x    

6.         1 w
t tt t t i iv v y x     

 
 

7.     else 

8.        1t t tv v w   
  

9.    
1 1w wt t tv  

 

 

10. Output： 1wT   
  

 

B. RMSprop SVM 

RMSprop [14] is an adaptive learning rate 

method proposed by Geoff  Hinton. 

The RMSprop update rule: 
2 2 2
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Algorithm 2：RMSprop SVM 

1. Input： S，λ， , , ,T      

2. Initialize： 1 0w 


 
， 2

1[ ] 0, 1 8,E e   


 

0.9, 0.01    

3.  for 1, ,t T   

4.    choose   1,..., S  ti   uniformly at random
 
  

5.     if  w , 1,   then
t ti t iy x   

6.        
1 w

t tt t t i iy x   
 
 

7.      else 

8.        1 wt t 
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11.  Output： 1wT   
  

 

C. NAG SVM 

Nesterov accelerated gradient (NAG) [15] is a 

way to look ahead by calculating the gradient not w.r.t. 

to our current parameters but w.r.t. the approximate 

future position of our parameters. The parameter update 

takes the form: 

  1

1 1

w

w w
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 
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Algorithm 3：NAG  SVM 

1.  Input： S，λ，T,  ,    

2. Initialize： 1w 0


 
， 1 0, 0.9v  


 

3.  for 1, ,t T   

4.    choose   1,..., S  ti   uniformly at random
 
  

5.     if  w , 1,   then
t ti t iy x   

6.          1 w
t tt t t t i iv v v y x       

 
 

7.      else 

8.         1 wt t t tv v v       

9.     1 1w wt t tv    

10. Output： 1wT   
  

 

 

IV. EXPERIMENTAL RESULTS  

In this section, we perform some experiments 

that demonstrate the efficacy of our algorithm. The 

basic SGD algorithm is Pegasos [1]. To evaluate the 

classification accuracy and convergence rate of four 

methods, several datasets are used to illustrate in the 

linear kernel situations. Machine has four E5-2609 

2.50GHz processors and 4GB RAM memory.  

 

We tested the performance of four methods on 

three large datasets and three standard real datasets, 

three large datasets are derived from Pascal Large Scale 

Learning Challenge, and three standard real datasets are 

downloaded from LIBSVM website. The Usps and 

Mnist datasets are used for the task of classifying digits 

0, 1, 2, 3, 4 versus the rest of the classes. The original 

Letter dataset’s labels represent 26 alphabets and we set 

the former 13 alphabets as positive class and the rest as 

negative class. We use the linear kernel and the 

regularization parameter λ in our experiments. The 

datasets characteristics are given in Table 1. 
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Table 1  Datasets and Parameters 

Dataset #Training #Testing #Features 

Alpha 400,000 100,000 500 

Gamma 400,000 100,000 500 

Delta 400,000 100,000 500 

Mnist 60,000 10,000 780 

Letter 15,000 5,000 16 

Usps 7,291 2,007 256 

 
Table 2 shows the testing accuracy of four methods for linear 

kernel on six datasets. 

Table 2  Comparisons of Four Methods 

Dataset Pegasos Momentum RMSprop NAG 

Alpha 72.68 71.56 75.05 71.82 

Gamma 73.15 70.82 77.04 70.71 

Delta 70.77 65.55 74.60 65.81 

Mnist 87.03 83.82 84.78 84.17 

Letter 73.51 73.16 73.74 73.59 

Usps 83.83 82.46 83.64 82.23 

 

Figures 1-6 shows the convergence rate four 

methods with the number of iteration growing. 

 

 
Fig 1 Comparisons of Four Methods on Alpha Dataset 

 

 
Fig 2 Comparisons of Four Methods on Gamma Dataset 

 

 
Fig 3 Comparisons of Four Methods on Delta Dataset 

 

 
Fig 4 Comparisons of Four Methods on Mnist Dataset 

 

 
Fig 5 Comparisons of Four Methods on Usps Dataset 

 

 
Fig 6 Comparisons of Four Methods on Letter Dataset 

 

Figures 1-5 shows that RMSprop SVM 

method for linear kernel has a faster convergence rate 

than other methods on five datasets (Alpha, Gamma, 

Delta, Mnist, Usps).  Figure 6 show that Pegasos has a 

faster convergence rate than other methods on Letter 

dataset.  

 

V. CONCLUSION 

In this paper, we focus on the problem of 

improving the efficiency and classification ability of 

Support vector machines (SVM) based on stochastic 

gradient descent algorithm, three algorithms of 

improved stochastic gradient descent (SGD) are used to 

solve support vector machine, which are Momentum, 

Nesterov accelerated gradient (NAG), RMSprop. The 

experimental results show that the algorithm based on 

RMSprop for solving the linear support vector machine 

has faster convergence speed and higher testing 

precision on five datasets (Alpha, Gamma, Delta, Mnist, 

Usps). Pegasos has a faster convergence rate than other 

methods on Letter dataset. 
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