
International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 5 September to October 2015

36

www.ijresonline.com

NoSQL Databases: state-of-the-art and

Security Challenges
Rabi Prasad Padhy1, Deepti Panigrahy2

1(Technical SME, IBM India Pvt. Ltd., Bangalore, Karnataka, India)

2(R & D Engineer, Redknee Technologies, Bangalore, Karnataka, India)

Abstract:

Traditional RDBMS's were facing

challenges in meeting the performance and scale

requirements of Big Data. NoSQL stores present

themselves as alternatives that can handle huge

volume of data, support for next-generation web

applications and offer a significant change to how

enterprise applications are built. These databases are

commonly schema-less, easy replication support,

simple API, eventually consistent / BASE (not ACID),

So these databases are used more and more in

companies and startups where there is a huge need to

dig the ‘big-data’ treasures. This research paper

describes the NoSQL database background, basic

characteristics, data models & architecture. In

addition, this paper classifies NoSQL databases

according to the CAP theorem. Finally, the

mainstream NoSQL databases are described in detail

and extract some properties to help enterprises to

choose NoSQL. Consequently we also identified

research challenges, security measures and future

prospects of NOSQL databases.

Keywords: NoSQL Data Store, Big Data, Hbase,

Cassandra, MangoDB, Cloud Database;

I. INTRODUCTION

Digital world is growing very fast and

become more complex in the volume (terabyte to

petabyte), variety (structured and unstructured and

hybrid), velocity (high speed in growth) in nature. To

addressing ever increasing changes in data

management needs require solutions that can achieve

unlimited scalability, high availability and massive

parallelism while ensuring high performance levels

[1]. Big Data and NoSQL technologies are

simultaneously marketing hypes and tools that could

significantly change the database and application

development landscape. This refers to as „Big Data‟

that is a global phenomenon. The new breed of

applications like business intelligence, enterprise

analytics, Customer Relationship Management,

document processing, Social Networks, Web 2.0 and

Cloud Computing require horizontal scaling of

thousands of nodes as demanded when handling huge

collections of structured and unstructured data sets

that traditional RDBMS fail to manage. This led to

the development of horizontally scalable, distributed

non-relational data stores, called Nosql databases.

Currently there are about 150 different NoSQL

databases available [2].

II. OVERVIEW OF NOSQL DATABASE

SYSTEMS

In general, NoSQL databases have become

the first alternative to relational databases, with

scalability, availability, and fault tolerance being key

deciding factors. They go well beyond the more

widely understood legacy, relational databases (such

as Oracle, SQL Server and DB2 databases) in

satisfying the needs of today‟s modern business

applications [1]. A very flexible and schema-less data

model, horizontal scalability, distributed

architectures, and the use of languages and interfaces

that are “not only” SQL typically characterize this

technology. From a business standpoint, considering

a NoSQL or „Big Data‟ environment has been shown

to provide a clear competitive advantage in numerous

industries. In the „age of data‟, this is compelling

information as a great saying about the importance of

data is summed up with the following “if your data

isn‟t growing then neither is your business”. By

design, NoSQL databases and management systems

are relation-less (or schema-less). They are not based

on a single model (e.g. relational model of RDBMSs)

and each database, depending on their target-

functionality, adopt a different one.

NOSQL CHARACTERISTICS:

A. Based on Distributed Computing:

Unlike traditional RDBMS, NoSQL

database have been designed to favour distributed

computing and a shared nothing architecture. This is

essentially because scaling horizontally is believed to

be the only cost effective way of handling large

volumes of data. Additionally horizontally scaled

databased is a simpler way to handle large workloads.

B. Commodity Hardware:

Most NoSQL database have been designed

to run on cheap commodity hardware (in reality high

end commodity hardware) instead to high end

servers. This has mainly been done in order to enable

scaling in a cost effective manner.

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 5 September to October 2015

37

www.ijresonline.com

C. ACID, BASE and the CAP Theorem:

 NoSQL database have traded one or more of

the ACID (atomicity, consistency, isolation and

durability) properties for BASE properties (Basic

Availability, Soft-state, Eventual consistency). As all

new NoSQL databases use distributed computing and

due to the limitations placed by the CAP theorem

NoSQL database have chosen BASE (Basic

Availability, Soft-state, Eventual consistency) over

ACID. While ACID is a pessimistic approach and

forces consistency at the end of each transaction,

BASE is an optimistic approach where by it accepts

that data will be in a state of flux but will eventually

sort itself out [4]. Choosing BASE over ACID

enables systems to scale horizontally.

D. Provide a Flexible Schema:

In order to store the large growing amount of

semi structured and unstructured data developers

need a flexible solution that easily accommodates

different types of data. Additionally due to the

constant change in requirements a schema which is

easily evolvable is also required. Thus most new

NoSQL database generally provide a flexible schema

which can be easily evolved as opposed to the rigid

schemas required by RDBMS. This has made

working with semi structured and unstructured data a

lot easier.

III. NOSQL DATABASE ARCHITECTURE

The core of the NoSQL database is the hash

function – a mathematical algorithm that takes a

variable length input and produces a consistent, fixed-

length output. The key of each key/value pair being

fed to a NoSQL database is hashed and this hash

value is used to direct the pair to a particular NoSQL

database server, where the record is stored for later

retrieval. When an application wishes to retrieve a

key value pair, it provides the database with the key

[5]. This key is then hashed again to determine the

appropriate server where the data would be stored (if

the key exists in the database) and then the database

engine retrieves the key/value pair from that server.

Role of Data Architecture in NoSQL

A. Components: There are four components in

its building block.

B. Modelling Language:It describes the

structure of the database and also defines schema on

which it is based. Data is stored in the form of rows

and columns using XML formats. And each data

(value) corresponding to it is assigned a key that is

unique in nature. For faster access of data, the model

is built in a suitable environment.

C. Database Structure:Each and every

database while building uses its own data structures

and stores data using permanent storage device.

D. Database Query language:All the

operations are performed on the database that are

creation, updation, read and delete.

E. Transactions:During any transaction in the

data, there may be any type of faults or a failure;

then, the machine will not stop working.

IV. NOSQL DATABASE DESIGN

NoSQL database design uses a set of rules

called BASE (basically available, soft-state,

eventually consistent) to guide their design [6].

Design strategies for NoSQL databases depend on the

type of database and the negatives of different data

model techniques. Where relational databases have a

user-centered approach and NoSQL databases have

an application-centered approach. This is a critical

difference both in data structures as well as

approaches to designing a database. The key design

difference between NoSQL and relational databases

is the structure of data in each database. Relational

databases require data be organized ahead of time.

NoSQL databases can have their structure modified

on the fly with little impact because they use key-

value pairs; updating a data structure in NoSQL can

involve adding additional data to the value of one or

more keys while leaving other key-value pairs in the

database untouched.

Key-value pairs are the main feature of these

databases. Keys are names or unique ID numbers and

values range from simple data to documents to

columns of data to structured lists (arrays) of key-

value data. Each row in a NoSQL table includes the

key and its value. The design of NoSQL databases

depends on the type of database, called stores.

Document Stores pair each key identifier with a

document which can be a document, key-value pairs,

or key-value arrays. Graph Stores are designed to

hold data best represented by graphs, interconnected

data with an unknown number of relations between

the data, for example, social networks or road maps

[7]. Key-Value Stores are the simplest type with

every bit of data stored with a name (as key) and its

data (value). Wide Column Stores are optimized for

queries across large data sets.

V. STATE OF THE ART

There are three basic requirements for

databases management systems, confidentiality,

integrity and availability. The stored data must be

available when it is needed (availability), but only to

authorized entities (confidentiality), and only

modified by authorized entities (integrity).

Traditional relational database management systems

(RDBMS), like Oracle, SQL and MySQL, have been

well-developed to meet the three requirements [8]. In

addition, enterprise RDBMS are further required to

have ACID properties, Atomic, Consistency,

Isolation, and Durability, that guarantee that database

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 5 September to October 2015

38

www.ijresonline.com

transactions are processed reliably With such

desirable properties, RDBMS have been widely used

as the dominant data storage choice [9].

VI. NOSQL DATABASES DATA MODELS

The family of data stores belonging to the

NoSQL category can be further sub-classified based

on their data models. NoSQL data stores into four

major categories: key-value stores, column-family

stores, document stores, and graph databases. Figure

shows representations of these models [10].

Key-value stores:

Key-value stores have a simple data model based on

key-value pairs, which resembles an associative map

or a dictionary. The key uniquely identifies the value

and is used to store and retrieve the value into and out

of the data store. The value is opaque to the data store

and can be used to store any arbitrary data, including

an integer, a string, an array, or an object, providing a

schema-free data model. Along with being schema-

free, key-value stores are very efficient in storing

distributed data, but are not suitable for scenarios

requiring relations or structures [11]. Any

functionality requiring relations, structures, or both

must be implemented in the client application

interacting with the key-value store. Furthermore,

because the values are opaque to them, these data

stores cannot handle data-level querying and indexing

and can perform queries only through keys. Key-

value stores can be further classified as in-memory

key-value stores which keep the data in memory, like

Memcached and Redis, and persistent key-value

stores which maintain the data on disk, such as

BerkeleyDB, Voldemort,andRiak.

Column-family stores:
Most column-family stores are derived from Google

Bigtable, in which the data are stored in a column-

oriented way. In Bigtable, the dataset consists of

several rows, each of which is addressed by a unique

row key, also known as a primary key [12]. Each row

is composed of a set of column families, and different

rows can have different column families. Similarly to

key-value stores, the row key resembles the key, and

the set of column families resembles the value

represented by the row key. However, each column

family further acts as a key for the one or more

columns that it holds, where each column consists of

a name-value pair. Hadoop HBase directly

implements the Google Bigtable concepts, whereas

Amazon SimpleDB and DynamoDB have a different

data model than Bigtable. SimpleDB and DymanoDB

contain only a set of column name-value pairs in each

row, without having column families. Cassandra, on

the other hand, provides the additional functionality

of super-columns, which are formed by grouping

various columns together. Typically, the data

belonging to a row is stored together on the same

server node. However, Cassandra offers to store a

single row across multiple server nodes by using

composite partition keys. In column-family stores, the

configuration of column families is typically

performed during start-up. However, a prior

definition of columns is not required, which offers

huge flexibility in storing any data type. In general,

column-family stores provide more powerful

indexing and querying than key-value stores because

they are based on columnfamilies and columns in

addition to row keys [13]. Similarly to key-value

stores, any logic requiringrelations must be

implemented in the client application.

Document stores:

 Document stores provide another derivative of the

key-value store data model by using keys to locate

documents inside the data store. Most document

stores represent documents using JSON (JavaScript

Object Notation) or some format derived from it. For

example, CouchDB and the Couchbase server use the

JSON format for data storage, whereas MongoDB

stores data in BSON (Binary JSON). Document

stores are suitable for applications in which the input

data can be represented in a document format [14]. A

document can contain complex data structures such

as nested objects and does not require adherence to a

fixed schema. MongoDB provides the additional

functionality of grouping the documents together into

collections. Therefore, inside each collection, a

document should have a unique key. Unlike an

RDBMS, where every row in a table follows the same

schema, each document inside these document stores

can have a different structure. Document stores

provide the capability of indexing documents based

on the primary key as well as on the contents of the

documents. This indexing and querying capability

based on document contents differentiates this data

model from the key-value stores model, in which the

values are opaque to the data store. On the other

hand, document stores can store only data that can be

represented as a document. Like key-value stores,

they are inefficient in multiple-key transactions

involving cross-document operations.

Graph databases:

Graph databases originated from graph theory and

use graphs as their data model. A graph is a

mathematical concept used to represent a set of

objects, known as vertices or nodes, and the links (or

edges) that interconnect these vertices. By using a

completely different data model than key-value,

column-family, and document stores, graph databases

can efficiently store the relationships between

different data nodes. In graph databases, the nodes

and edges also have individual properties consisting

of key-value pairs [15]. Graph databases are

specialized in handling highly interconnected data

and therefore are very efficient in traversing

relationships between different entities. They are

suitable in scenarios such as social networking

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 5 September to October 2015

39

www.ijresonline.com

applications, pattern recognition, dependency

analysis, recommendation systems and solving path

finding problems raised in navigation systems. Some

graph databases such as Neo4J are fully ACID-

compliant. However, they are not as efficient as other

NoSQL data stores in scenarios other than handling

graphs and relationships [16]. Moreover, existing

graph databases are not efficient at horizontal scaling

because when related nodes are stored on different

servers, traversing multiple servers is not

performance-efficient.

VII. DIFFICULTIES MIGRATING FROM SQL

TO NOSQL

The key requirements for our application:

Some of the requirements that match the need for

NoSQL are

A. Rapid application development

● Changing market needs.
● Changing data needs.

B. Scalability

● Unknown user demand.
● Need for constantly growing throughput to

access, add and update data.

C. Consistent performance

● Low response time for better user experience.
● High throughput to handle viral growth.

D. Operational reliability

● High-availability to handle failures gracefully

with minimal impact to the application.
● Built-in monitoring APIs for easy ongoing

maintenance.

VIII. KEY CONSIDERATIONS WHEN

CHOOSING OUR NOSQL PLATFORM

A. Workload Diversity
Big Data comes in all shapes, colors and

sizes. Rigid schemas have no place here; instead you

need a more flexible design. We want our technology

to fit our data, not the other way around. And we

want to be able to do more with all of that data –

perform transactions in real-time, run analytics just as

fast and find anything we want in an instant from

oceans of data, no matter what from that data may

take.

B. Scalability

With big data we want to be able to scale

very rapidly and elastically, whenever and wherever

we want. This applies to all situations, whether

scaling across multiple data centers and even to the

cloud if needed.

C. Performance

In an online world where nanosecond delays

can cost the business, Big Data must move at

extremely high velocities no matter how much we

scale or what workloads our database must perform.

Performance of our environment, namely our

applications, should be high on the list of

requirements for deploying a NoSQL platform.

D. Continuous Availability

Building off of the performance

consideration, when we rely on big data to feed your

essential, revenue-generating 24/7 business

applications, even high availability is not high

enough. Our data can never go down, therefore there

should be no single point of failure in our NoSQL

environment, and thus ensuring applications are

always available.

E. Manageability

Operational complexity of a NoSQL

platform should be kept at a minimum. Make sure

that the administration and development required to

both maintain and maximize the benefits of moving

to a NoSQL environment are achievable.

F. Cost

This is certainly a glaring reason for making

the move to a NoSQL platform as meeting even one

of the considerations presented here with relational

database technology can cost become prohibitively

expensive. Deploying NoSQL properly allows for all

of the benefits above while also lowering operational

costs.

G. Strong Community

This is perhaps one of the more important

factors to keep in mind as we move to a NoSQL

platform. We need to make sure there is a solid and

capable community around the technology, as this

will provide an invaluable resource for the

individuals and teams that will be managing the

environment. Involvement on the part of the vendor

should not only include strong support and technical

resource availability, but also consistent outreach to

the user base. Good local user groups and meetups

will provide many opportunities for communicating

with other individuals and teams that will provide

great insight into how to work best with the platform

of choice.

IX. NOSQL PRODUCTS

A. Redis

Redis is a “NoSQL” key-value, networked,

in-memory data store written in ANSI C. Its very

popular key-value data store, languages that already

have bindings for it include ActionScript, C, C++,

C#, Clojure, Common Lisp, Dart, Erlang, Go,

Haskell, Haxe, Io, Java, JavaScript (Node.js), Lua,

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 5 September to October 2015

40

www.ijresonline.com

Objective-C, Perl, PHP, Pure Data, Python, R, Ruby,

Scala, Smalltalk and Tcl. Key features include a

dictionary data model key-mapped to values,

persistence through storage of the entire dataset in

memory, master-slave replication and better

performance via in-memory storage. Redis also offers

alpha stage clustering, ease-of-use in IaaS and PaaS

platforms, and the ability to use Radis as a managed

service without having to launch the VM instance of

the database [17].

Fig. 1. NoSQL Products

B. Riak:

Riak uses a simple key/value model for

object storage. Objects in Riak consist of a unique

key and a value, stored in a flat namespace called a

bucket. We can store anything we want in Riak: text,

images, JSON/XML/HTML documents, user and

session data, backups, log files, and more [20]. It has

Amazon S3-API compatibility, per-tenant visibility

(accessible over network I/O), metadata and large

object support, multi-datacenter replication, and

more. Data in Riak is private by default and Access

Control Lists are available to further refine data

visibility.

C. Apache Cassandra:

This database providing scalability, high

availability and fault-tolerance on hardware, virtual

systems or cloud infrastructure [23]. With column

indexing, log-structured updates, denormalized and

materialized views and built-in caching, many large-

scale organizations have chosen to use Cassandra

(including Constant Contact, CERN, Comcast, eBay,

GitHub, GoDaddy, Hulu, Instagram, Intuit, Netflix,

Reddit, The Weather Channel, and many others).

Features include automatic replication to multiple

nodes for fault-tolerance, avoiding single points of

failure by keeping cluster nodes identical,

synchronous or asynchronous replication during

updates, and read/write throughput supported without

downtime or interruption. Third party contract

support services for Apache Cassandra are also

available.

D. HBase:

Apache Hbase is distributed, scalable, secure

and provides high availability. Modeled after

Google's BigTable, HBase can handle massive data

tables containing billions of rows, millions of

columns, and utilizes storage, memory and CPU

resources across multiple servers within a cluster so

that the database scales horizontally [22]. Other

features include Kerberos security across tables and

columns, automatic sharding, full consistency, and a

scale-out architecture allowing for the addition of

servers for increased capacity. HBase also features

compression, in-memory operation and Bloom filters

on a per-column basis. MapReduce jobs run in

Hadoop and can use HBAse tables for input and

output.

E. Amazon DynamoDB:

DynamoDB is a cloud based NoSQL

database offered by Amazon. It is one of the fastest

growing AWS services. It is a fast, fully managed

NoSQL database service that makes it simple and

cost-effective to store and retrieve any amount of

data, and serve any level of request traffic. All data

items are stored on Solid State Drives (SSDs), and are

replicated across three Availability Zones for high

availability and durability [25].

F. PROS:

● Scalable
● Simple
● Hosted by Amazon
● Good SDK
● Free account for small amount of reads/writes
● Pricing based on throughput

G. CONS:

● Poor documentation
● Limited data types
● Poor query comparison operators
● Unable to do complex queries
● 64KB limit on row size

● 1MB limit on querying

H. Google Bigtable:

Bigtable is a distributed storage system for

structured data. Bigtable can handle data that scales

to a very large size, even to petabytes, distributed

across thousands of servers. Many Google projects

such as Google Earth, Google Finance, and Orkut

with varied latency requirements and real-time

processing use Bigtable to store their data [21]. These

applications have asynchronous processes updating

the data simultaneously at a very high speed. A

read/write of about a million operations per second is

what is expected. Bigtable stores data as a distributed

multidimensional sorted map with row, column and

timestamp. It places frequently accessed columns

together as column families. Storing the timestamp

allows multiple versions of the contents to be stored

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 5 September to October 2015

41

www.ijresonline.com

in the same cell and users can access the most recent

version or base query on timestamp range. Rows are

ordered lexicographically and groups of contiguous

rows are stored on same machines as a single tablet

for easy access.

Bigtable implementation involves one

Master server and many tablet servers. The master

assigns data tablets which are contiguous rows of data

in a table to tablet servers, balances the load and

collects garbage. The tablet servers service the

clients. The data is stored as tables and each table is

split into many tablets based on a range of rows.

Table/ tablets are split automatically when the size of

the tablet increases or the load becomes heavy on a

tablet. There is no replication of tablets. Each tablet is

serviced by only one tablet server. Access to data is

in the form of a three level hierarchy. The first level

is an address in the chubby to the root directory; the

second level is the address of the tablet in the

metadata table. The third level is the actual address of

the user tablet that contains the data. The traffic on

the root directory is regulated by caching the

information of the metadata tablet on the client

machines and also dedicating one tablet server to

service just that metadata tablet. In case of this tablet

server going down, the cached data on the clients are

used until the metadata tablet is reassigned. If the

need arises, it is also possible to replicate this

metadata information. The chubby directory keeps

track of the tablets assigned to various tablet servers.

When the user needs any information, the three level

hierarchical access takes the user straight to the tablet

without worrying about the actual physical location.

This completely abstracts the path access from the

user.
Fig. 2. BigTable Architecture

I. CouchDB:

CouchDB is a database that completely

embraces the web. Store our data with JSON

documents. Access our documents and query our

indexes with our web browser, via HTTP. Index,

combine, and transform your documents with

JavaScript. CouchDB works well with modern web

and mobile apps. We can even serve web apps

directly out of CouchDB. And we can distribute our

data/apps, efficiently using CouchDB‟s incremental

replication. CouchDB supports master-master setups

with automatic conflict detection [19].

J. MongoDB:

This is a open source document database

written in C++. Features include document-oriented

storage (JSON-style documents, dynamic schemas),

full index support (on any attribute), replication and

high availability (across LANs and WANs for scale),

auto-sharding (scale horizontally), querying, rapid in-

place updates and map/reduce [18]. MongoDB also

has flexible aggregation and data processing, GridFS,

(store files of any size), MongoDB management

service and professional support. One advantages of

MongoDB is embedded documents and arrays, which

reduce the need for expensive joins. Additionally,

dynamic schema supports fluent polymorphism and

documents correspond to native data types in many

programming languages.

K. Neo4J:

Neo4J is a Java-based open source NoSQL

graph database. With a graph database, which can

search social network data, connections between data

are explored [26]. Neo4j can solve problems that

require repeated network probing (the database is

filled with nodes, which are then linked), and the

company stresses Neo4j‟s high performance. The

importance of graph database technology as well as

Neoo4j‟s potential in the mobile space. Eifrem also

stressed his confidence in Java, despite recent

security issues affecting the platform.

L. InfiniteGraph:

InfiniteGraph is a distributed graph database

implemented in Java, and is from a class of NOSQL

(or Not Only SQL) data technologies focused on

graph data structures [27]. Graph data typically

consist of objects or things (nodes) and various

relationships (edges) that may connect two or more

nodes. Developers may use Infinitegraph to build web

and mobile applications and services that need to

solve graph problems or answer.

X. COMPARISON BETWEEN RDBMS VS

NOSQL
A. RDBMS

● Structured and organized data
● Structured query language (SQL)

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 5 September to October 2015

42

www.ijresonline.com

● Data and its relationships are stored in

separate tables.
● Data Manipulation Language, Data

Definition Language
● Tight Consistency
● BASE Transaction

B. NoSQL

● Stands for Not Only SQL
● No declarative query language
● No predefined schema
● Key-Value pair storage, Column Store,

Document Store, Graph databases
● Eventual consistency rather ACID property
● Unstructured and unpredictable data
● CAP Theorem
● Prioritizes high performance, high

availability and scalability

XI. SECURITY CHALLENGES

Security in NoSQL databases is very weak,

Authentication and Encryption is almost nonexistence

or is very weak when implemented. In comparison

with the relational databases, NoSQL databases

provide a very thin layer of security. The NoSQL

databases emerge with different security issues. The

NoSQL databases are built to meet the requirements

of analytical world of big data, and less emphasis on

security is given during design stage. To overcome

the security issues of NoSQL databases, developers

must embed the security mechanism at the

middleware along with strengthening the database

itself in comparison with the relational databases

without compromising the scalability and

performance features.
The below are security issues associated

with NoSQL databases:

● Administrative user or authentication is not

enabled by default.
● It has a very weak password storage
● Client communicates with server via

plaintext(MongoDB)
● Cannot use external encryption tools like

LDAP, Kerberos etc
● Lack of encryption support for the data files
● Weak authentication both between client and

the servers
● Vulnerability to SQL injection
● Denial of service attacks.
● Data at rest is Unencrypted.
● The Available encryption solution isn‟t

production ready
● Encryption isn‟t available for client

communication.

XII. CONCLUSION & FUTURE WORK

NoSQL databases taking the world by storm

and promising future for the lightweight storage of

data in a highly efficient manner. We have reviewed

most popular NoSQL databases and outlines their

main security features, problems and researchers to

choose appropriate storage solutions, and identifying

challenges and opportunities in the field. A

comparison between RDBMS & NoSQL was

performed on a number of dimensions, including data

models, querying capabilities, scaling, and security

attributes. We also reviewed the main functionality

and security features of two of the most popular

NoSQL databases.

REFERENCE

[1] Padhy, Rabi Prasad, ManasRanjan Patra, and Suresh

Chandra Satapathy. "RDBMS to NoSQL: Reviewing some

next-generation non-relational databases." International

Journal of Advanced Engineering Science and

Technologies 11.1 (2011): 15-30.

[2] Ramanathan, Shalini; Goel, Savita; Alagumalai,

Subramanian; , "Comparison of Cloud database: Amazon's

SimpleDB and Google's Bigtable," Recent Trends in

Information Systems (ReTIS), 2011 International

Conference on , vol., no., pp.165-168, 21-23 Dec. 2011

doi: 10.1109/ReTIS.201 1.614686.

[3] Floratou, A., Teletia, N., DeWitt, D. J., Patel, J.M., and

Zhang, D. (2012) „Can the elephants handle the NoSQL

onslaught?‟, Proceedings of the VLDB Endowment, 5, 12,

1712-1723

[4] Clarence J M Tauro, Aravindh S, Shreeharsha A.

B,“Comparative Study of the New Generation,

Agile,Scalable, High Performance NOSQL Databases”,

International Journal of Computer Applications (0975–

888) Volume 48–No.20, June 2012 doi:10.5120/7461-

0336

[5] Jing Han; Haihong, E.; Guan Le; Jian Du; , "Survey on

NoSQL database," Pervasive Computing and Applications

(ICPCA), 2011 6th International Conference on , vol., no.,

pp.363-366, 26-28 Oct. 2011 doi: 10.1109/

ICPCA.2011.6106531

[6] Rick Cattell, „Scalable SQL and NoSQL data stores‟ ,

ACM SIGMOD Record archive, Volume 39 Issue 4,

December 2010, Pages 12-27, ACM New York, NY, USA,

doi:10.1145/1978915.1978919

[7] ingjie Shi, XiaofengMeng, Jing Zhao, Xiangmei Hu,

Bingbing Liu, Haiping Wang, „Benchmarking cloud-based

data management systems‟, CloudDB '10 Proceedings of

the second international workshop on Cloud data

management,pages 47-54, ACM New York, NY,USA

2010, ISBN: 978-1-4503-0380-4, doi:

10.1145/1871929.1871938

[8] Bogdan Tudorica, „Challenges for the NoSQL systems:

Directions for Further Research and Development‟, The

International Journal of Sustainable Economies

Management (IJSEM), Volume 2: Issue 1 (2013),

DOI:10.4018/IJSEM.2013010106, ISSN: 2160-9659,

EISSN: 2160-9667.

[9] Bogdan Tudorica, Bucur Cristian, „A comparison between

several NoSQL databases with comments and notes‟, The

proceedings of „2011 - Networking in Education and

Research” IEEE International Conference, June 23, 2011 –

June 25, 2011, AlexandruIoanCuza University from Iasi.

[10] Stonebraker, Michael; Madden, Samuel; Abadi, Daniel J.;

Harizopoulos, Stavros, “The end of an architectural era:

(it‟s time for a complete rewrite),” Proceedings of the 33rd

international conference on Very large data bases, VLDB,

p. 1150–1160, 2007.

[11] Sharma and M. Dave, “SQL and NoSQL Databases,”

International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 2, no. 8, pp. 20-27,

2012.

[12] [ishthaJatana, SahilPuri, Mehak Ahuja, IshitaKathuria,

DishantGosain, “A Survey and Comparison of Relational

and Non-Relational Database,” International Journal of

International Journal of Recent Engineering Science (IJRES),

ISSN: 2349-7157, Volume 2 Issue 5 September to October 2015

43

www.ijresonline.com

Engineering Research & Technology (IJERT), vol. I, no.

6, 2012.

[13] Jayathilake, D.; Sooriaarachchi, C.; Gunawardena, T.;

Kulasuriya, B.; Dayaratne, T., "A study into the

capabilities of NoSQL databases in handling a highly

heterogeneous tree," Information and Automation for

Sustainability (ICIAfS), 2012 IEEE 6th International

Conference on, vol., no., pp.106,111, 27-29 Sept. 2012.

doi: 10.1109/ICIAFS.2012.6419890.

[14] Jing Han; Haihong, E.; Guan Le; Jian Du, "Survey on

NoSQL database," Pervasive Computing and Applications

(ICPCA), 2011 6th International Conference on, vol., no.,

pp. 363, 366, 26-28 Oct. 2011.

doi:10.1109/ICPCA.2011.6106531.

[15] Tudorica, B. G.; Bucur, C., "A comparison between

several NoSQL databases with comments and

notes,"Roedunet International Conference (RoEduNet),

2011 10th, vol., no., pp.1,5, 23-25 June 2011.

doi:10.1109/RoEduNet.2011.5993686.

[16] Bhatewara, Ankita; Waghmare, Kalyani, “Improving

network scalability using nosql database,” International

Journal of Advanced Computer Research, 2012, Vol. 2

Issue 6, pp. 488

[17] Redis : http://redis.io/documentation

[18] MongoDB: https://www.mongodb.org/

[19] CouchDB: http://couchdb.apache.org/

[20] Riak: http://docs.basho.com/riak/latest/

[21] Bigtable: https://cloud.google.com/bigtable/

[22] HBase: https://hbase.apache.org/

[23] Cassandra: http://cassandra.apache.org/

[24] GraphDB:http://ontotext.com/products/ontotext-graphdb/

[25] https://aws.amazon.com/dynamodb

[26] http://neo4j.com/docs/

[27] http://support.objectivity.com/docs/infinitegraph/

