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 Abstract: 

 A core set sequential feed-forward neural 

networks (CS-SFFN) approach is proposed in order to 

deal with large datasets classification problem. In the 

first stage, the core set can be obtained efficiently by 

using the generalized core vector machine (GCVM) 

algorithm. For the second stage, the sequential feed-

forward neural networks (SFFN) can be used to 

implement classification. A strategy proposed within 

CS-SFFN is to take hidden-layer input weights as a 

subset of the core set (input strategy). Experiments 

show that the CS-SFFN has comparable performance 

with SV-SFFNs and EM-ELM. 
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I. INTRODUCTION 

How to effectively deal with large-scale data is 

a hot issue in current research. In recent years, a variety 

of approaches have been proposed in large datasets 

problem. These methods include: the extreme learning 

machine (ELM) [1, 2], ELM is a single hidden layer feed 

forward network where the input weights and the biases 

are chosen randomly and the output weights are 

calculated analytically; a generalized perceptron with 

margin [3], which can deal with the large datasets 

problem; a general piecewise linear classifier [4], which 

can solve the nonlinear separable 

problem without kernel; the geometric algorithms to 

large margin classifier based on affine hulls [5]; by 

chunking or decomposition methods, for example, the 

well-known sequential minimal optimization (SMO) 

algorithm [6]; sampling techniques for kernel methods [7]; 

the core vector machine (CVM) [8, 9], Tsang et al. 

proposed the core vector machine (CVM) by utilizing 

an approximation algorithm for the minimum enclosing 

ball (MEB) problem in computational geometry, the 

CVM algorithm achieves an asymptotictime complexity 

that is linear in N and a space complexity that is 

independent of N, where N is the size of the training 

patterns；maximum vector-angular margin core vector 

machine (MAMCVM) [10], by connecting the CVM 

method with MAMC such that the corresponding fast 

training on large datasets can be effectively achieved. 

Methods that construct SLFNs sequentially had 

been reported [11-13]. Error minimized extreme learning 

machines has been proposed as a simple and efficient 

approach to build single hidden layer feed forward 

networks (SLFNs) sequentially. EM-ELM is an 

incremental extension of the extreme learning machines. 

They add random hidden nodes one by one (or group by 

group) and update the output weights incrementally to 

minimize the sum-of-squares error in the training set. 

Support vector sequential feed-forward neural networks 

(SV-SFNNs) are a particular case of the sequential 

approximation with optimal coefficients and interacting 

frequencies (SAOCIF) method. Their hidden-layer 

weights are a subset of the data instead of being random. 

In this paper, we focus on the large datasets 

effective classification problem, a core set sequential 

feed-forward neural networks (CS-SFFN) approach is 

proposed. It consists of two stages. The first stage is to 

obtain the core set of the large training dataset by using 

the GCVM algorithm. In the second stage, the 

sequential feed-forward neural networks (SFFN) can be 

used to implement classification. A strategy proposed 

within CS-SFFN is to take hidden-layer input weights 

as a subset of the core set (input strategy). This work 

shows a comparison between with random strategy and 

with input strategy. The goal is  finding  out  whether  

there  is  any  difference  in  generalization  

performance  among  CS-SFFN, SV-SFNNs and EM-

ELM. An experimental study on 10 benchmark data 

sets for classification problems is presented. 

Experiments also demonstrated that the CS-SFFN has 

comparable performance with SV-SFNNs and EM-

ELM implementations. 

The rest of this paper is organized as follows. 

Section 2 reviews the GCVM and SV-SFNNs. Section 

3 presents the CS-SFFNS approach. In Section 4, the 

experimental results on several datasets are reported. 

Some conclusions are finally given in Section 5.  

II. BACKGROUND 

A. The Generalized Core Vector Machine (GCVM） 

In this section, we first review the generalized 

core vector machine (The generalized CVM, GCVM) 

algorithm as proposed in [9]. The GCVM algorithm is 

much faster and can handle much larger datasets than 
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existing SVM implementations. The generalized CVM 

algorithm can be used with any linear/nonlinear kernel 

and can also be applied to kernel methods such as SVR 

and the ranking SVM. Moreover, like the original CVM, 

its asymptotic time complexity is again linear in N and 

its space complexity is independent of N, where N is the 

size of the training patterns.  

 

The GCVM utilizes an approximation algorithm 

for the center constrain minimum enclosing ball (CC-

MEB) problem, which will be briefly introduced as 

follows: 
Suppose the training set is denoted by 

{ | , 1, , }n

i iS x x i N    , the minimum enclosing 

ball of S (denoted ( )MEB S ) is the smallest ball that 

contains all the points in S . In this paper, we denote 

the ball with center c  and radius R  by ( , )B Rc . Also, 

the center and radius of a ball ( , )B Rc  are denoted by 

Bc  and Br , respectively. Given an 0  , a 

ball ( , (1 ) )B Rc  is an (1 ) -approximation of 

( )MEB S  if ( )MEB SR r and ( , (1 ) )S B R c .  

: ( )i ix x  denotes the feature map associated with 

a given kernel k , and ( , )B Rc is the desired MEB in the 

kernel-induced feature space  . 

The MEB problem finds the smallest ball 

containing all ( )ix S   in the feature space. In this 

section, we first augment an extra i R  to each ( )ix  , 

forming 
( )i

i

x



 
 
 

. Then, we find the MEB for these 

augmented points, while at the same time constraining 

the last coordinate of the ball’s center to be zero (i.e., of 

the form 
0

 
 
 

c
). The primal form of the center constrain 

minimum enclosing ball (CC-MEB) problem can be 

formulated as 
2

2 2 2

min

. . ( ) , 1, , .i i

R

s t x R i N    c 
    (1) 

The corresponding dual of (1) is the following 

QP problem 

max ( ( ) )

. . 1, .

T T

T

diag

s t

 

 

α K Δ α Kα

α 1 α 0
                  (2) 

where [ ( , )] [ ( ) ( )]T

i j i jK k x x x x    is the 

corresponding kernel matrix, and 
2 2

1[ , , ] .T

N  Δ 0                          (3) 

From the optimal α solution of (2), we can 

recover R and c as 

( ( ) )T TR diag  α K Δ α Kα                   (4) 

1

( ).
N

i i

i

x 


c                               (5) 

The squared distance between the center 
0

 
 
 

c
and 

any point 
( )l

l

x



 
 
 

 

2 22 2( ) 2( ) .l l l ll lx k       c c Kα    (6) 

which does not depend explicitly on the feature map .  

Because of the constraint 1T α 1 in (2), an 

arbitrary multiple of T
α 1 can be added to the objective 

without affecting its solution. In other words, for an 

arbitrary  , (2) yields the same optimal as 

max ( ( ) )

. . 1, .

T T

T

diag

s t

  

 

α K Δ 1 α Kα

α 1 α 0
           (7) 

Hence, any QP problem of the form (7), with the 

condition (3), can also be regarded as a special MEB 

problem, called center constrained MEB, i.e. CC-MEB. 

As pointed out by Tsang et al., CC-MEB can be 

approximately solved with the asymptotic linear time 

complexity O(N) and its space complexity independent 

of N for large datasets by using the generalized core 

vector machine. 
The GCVM algorithm is introduced as follows: 

The GCVM algorithm is shown in Algorithm 1. 

Here, the core set, the ball’s center, and radius at the tth 

iteration are denoted by ,t tS c , and tR respectively. The 

GCVM algorithm requires the input of a termination 

parameter  . 

Algorithm 1.  GCVM 

1)    Initialize  , 0, ,t t tt S R c ,  

2)  Update the core set: if there is no training pattern 

that falls outside the ball ( ,(1 ) )t tB Rc  in the 

corresponding feature space, tS S . 

3)   Find z  such that it is the farthest away from tc  

in the corresponding feature space and set 

1 { }t tS S  z  

4)    Find the new MEB: 1 1( , )t tB R c  

5)    Set 1t t  , and go to step 2. 

 
B. Support Vector Sequential Feed-forward Neural 

Networks (SV- SFNNs) 

In order to avoid the need of setting in advance 

the number of hidden units and to reduce the training 

computational time, a fast sequential algorithm called 

SV-SFNNs has been reported. The candidates are 

generated using the input strategy; the resulting method 

selects the best of the input examples as the hidden-

layer weights of the new hidden unit.  

The input strategy: the one in which the 

candidates are only selected among the input examples 

in the training set; more precisely j  x , for some j not 
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already used, and b is a constant depending on the 

activation function. 

Algorithm 2.  SV-SFNNs 

Let {( , ) | , , 1,..., }n m

i i i i i N  x t x t  be a set of 

training examples, the maximum number of hidden 

units maxL  , a strategy to generate candidates, the 

maximum number of candidates for any hidden unit 

maxC , and the expected learning accuracy   . 

1) Initialization phase: 

Let L:=0, 0 [ ]H   .  

2) Recursively growing phase: 

Repeat  

let L:=L+1, c=0 

while maxc C do 

Generate a candidate ( , )b for the thL hidden 

unit with the given strategy, and store in a 

temporary matrix H the corresponding hidden-

layer output matrix  

1[ , ]L H H H                                   (8) 

where H   contains the new column computed.  

If H
T
H is well conditioned then 

Let c: =c+1 

Find the optimal output-layer weights  
†λ H T .                          (9) 

Calculate the corresponding output error  
21

2
( )E  H Hλ T .            (10) 

If E(H) is minimum in the current loop then  

Let ( , ) ( , ); ;L L L Lb b   λ λ H H . 

End if  

End if 

End while 

Until maxL L or ( )LE H . 

 

III. CORE SET SEQUENTIAL FEED-FORWARD 

NEURAL NETWORKS (CS-SFFN) 

We can now give a fast training algorithm for 

large datasets which is called a core set sequential feed-

forward neural networks (CS-SFFN). It consists of two 

stages. The first stage is to obtain the core set of the 

large training dataset by using GCVM. In the second 

stage, the sequential feed-forward neural networks 

(SFFN) can be used to implement classification.  

The input strategy: A strategy proposed within 

CS-SFFN is to take hidden-layer input weights as a 

subset of the core set (input strategy). CS-SFFN can be 

summarized as follows: 

Algorithm 3.  CS-SFFN  

Let {( , ) | , , 1,..., }n m

i i i i i N  x t x t   be a set of 

training examples, the maximum number of hidden 

units L, select hidden-layer weight from the core set, 

the maximum number of candidates for any hidden unit 

Cmax, and the expected learning accuracy  . 

Stage 1:  Using GCVM to obtain the core set tS . 

1)    Initialize  , 0, ,t t tt S R c ,  

2)   Update the core set: if there is no training 

pattern that falls outside the ball 

( ,(1 ) )t tB Rc  in the corresponding feature 

space, go to stage 2. 

3)   Find z  such that it is the farthest away from tc  

in the corresponding feature space and set 

1 { }t tS S  z  

4)   Find the new MEB: 1 1( , )t tB R c  

5)    Set 1t t  , and go to step 2. 

Stage 2:  Using SFFN to implement classification. 

1) Initialization phase: 

Let L:=0, 0 [ ]H   .  

2) Recursively growing phase: 

Repeat  

let L:=L+1, c=0 

while maxc C do 

Generate a candidate ( , )b for the thL hidden 

unit by selecting hidden-layer weight from the 

core set, and store in a temporary matrix H the 

corresponding hidden-layer output matrix  

1[ , ]L H H H  

where H   contains the new column computed.  

If H
T
H is well conditioned then 

Let c: =c+1 

Find the optimal output-layer weights  
†λ H T . 

Calculate the corresponding output error  
21

2
( )E  H Hλ T . 

If E(H) is minimum in the current loop then  

Let ( , ) ( , ); ;L L L Lb b   λ λ H H . 

End if  

End if 

End while 

Until maxL L or ( )LE H . 

 

IV. EXPERIMENTAL RESULTS  

In this section, we conduct the performance 

comparison of the three methods for ten real problems: 

Spambase, SkinNonSkin, Shuttle, Sat, MiniBooNE, 

Digit, Artifical, Letter, Page, and Contra. Most of the 

datasets are taken from the UCI machine learning 

repository [14]. All the simulations are carried out in 

MATLAB7.1 environment running in Intel Core(TM) 

i5-2400, 3.10GHz, 8GBRAM. The numbers of 

attributes, class, samples for training and testing are 

shown in Table 1. 

In all experiments, the naive QP solver is 

adopted to solve the QP problem and the Gaussian 

function is taken as the kernel function where h is the 

kernel parameter of the Gaussian kernel. The width 
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parameter h is selected to the mean squared norm of the 

training data. Setting an appropriate the approximation 

parameter   is important in CS-SFFN. The smaller 

 will result in more core vectors and the classification 

speed becomes slower. In our experiment, the sigmoid 

and RBF functions were used as an activation function 

for all models.  

 
Table 1. The experimental data sets 

Data set Attributes Training Testing Class 

Spambase 57 2300 2300 2 

Skin_NonSkin 3 147034 147034 2 

Shuttle 8 29000 29000 7 

Sat 36 3217 3217 7 

MiniBooNE 50 78038 78038 2 

Digit, 64 2810 2810 9 

Artifical 10 166666 166666 2 

Letter 16 10000 10000 26 

Page 10 2736 2736 5 

Contra 9 736 736 3 

 
Table 2. The average test accuracy of the data sets with 

RBF activation function 

Data set EM-ELM SV-SFFNs CS-SFFN 

Spambase 0.8865 0.9011 0.9011 

SkinNonSkin 0.9333 0.9231 0.8920 

Shuttle 0.9943 0.9867 0.9971 

Sat 0.8776 0.8612 0.8812 

MiniBooNE 0.8533 0.8623 0.8628 

Digit, 0.7913 0.7766 0.8011 

Artifical 0.8278 0.8522 0.8612 

Letter 0.8166 0.8322 0.8326 

Page 0.9551 0.9621 0.9713 

Contra 0.8865 0.8901 0.9025 

 

Ten trials were conducted for the three 

algorithms and the average results are shown in Tables 

2 and 3. Tables 2 and 3 respectively show the 

performance comparison of testing accuracy of the 

three methods with sigmoid and RBF activation 

function. As observed from the Tables 2 and 3, general 

speaking, testing accuracy of CS-SFFN is fully 

comparable to EM-ELM and SV-SFFNS or even better 

than them. 

 
Table 3. The average test accuracy of the data sets with 

sigmoid activation function 

Data set EM-ELM SV-SFFNs CS-SFFN 

Spambase 0.9100 0.9231 0.9563 

SkinNonSkin 0.9971 0.9983 0.9881 

Shuttle 0.9776 0.9673 0.9863 

Sat 0.8633 0.8735 0.8672 

MiniBooNE 0.8338 0.7917 0.8816 

Digit, 0.9459 0.9671 0.9629 

Artifical 0.7186 0.7512 0.8376 

Letter 0.7243 0.7513 0.7965 

Page 0.9576 0.9777 0.9819 

Contra 0.7123 0.7356 0.7562 

 
Table 4. The average hidden nodes numbers of the data 

sets with RBF activation function 

Data set EM-ELM SV-SFFNs CS-SFFN 

Spambase 70.12 80.11 86.21 

SkinNonSkin 69.76 73.66 79.65 

Shuttle 23.98 50.97 70.01 

Sat 12.88 31.76 30.87 

MiniBooNE 60.97 70.00 95.22 

Digit, 55.90 67.08 79.19 

Artifical 33.99 20.16 50.10 

Letter 90.99 85.14 68.21 

Page 49.08 33.77 77.05 

Contra 77.77 67.15 89.02 

 

Table 4 and Table 5 respectively show the 

average number of hidden nodes of data sets with the 

sigmoid and RBF activation functions for the three 

methods (EM-ELM, SV-SFFNs and CS-SFFN). From 

Table 4 and Table 5, although no clear trend is 

observed about the number of hidden units selected by 

both strategies, the input strategy seems to need more 

units than the random strategy. The low number of 

hidden units is a clear indication of a strong tendency to 

overfitting in this data set. 

 
Table 5. The average hidden nodes numbers of the data 

sets with sigmoid activation function 

Data set EM-ELM SV-SFFNs CS-SFFN 

Spambase 44.12 51.11 60.11 

SkinNonSkin 33.13 60.02 87.36 

Shuttle 10.86 13.09 20.11 

Sat 60.06 44.14 61.98 

MiniBooNE 88.03 80.17 66.91 

Digit, 31.90 20.99 88.90 

Artifical 87.69 60.66 50.12 

Letter 66.60 75.13 90.22 

Page 21.09 10.00 18.19 

Contra 31.19 56.00 70.15 

 

V. CONCLUSION 

The GCVM utilizes an approximation 

algorithm for the center constrain minimum enclosing 

ball (CC-MEB) problem. We proposed the core set 

sequential feed-forward neural networks (CS-SFFN) 

approach. It consists of two stages. In the first stage, the 

core set can be obtained efficiently by using the GCVM 

algorithm. The GCVM algorithm asymptotic time 

complexity is again linear in N and its space complexity 

is independent of N, where N is the size of the training 

patterns. Thus, we can obtain the core set quickly. In 

the second stage, the sequential feed-forward neural 

networks (SFFN) can be used to implement 
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classification. A strategy proposed within CS-SFFN is 

to take hidden-layer input weights as a subset of the 

core set (input strategy). An experimental study on 10 

benchmark data sets for classification problems is 

presented. Experiments also demonstrated that the CS-

SFFN has comparable performance with SV-SFNNs 

and EM-ELM implementations. Another conclusion of 

the experimental study is that, the input strategy should 

perform better than the random one, since the input 

strategy samples the weights from the underlying 

distribution of the data. 
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